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Background

| Two Types of Diffusion Models
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(a) Continuous Diffusion Model (b) Discrete Diffusion Model

Figure 5: Schematic representation of different diffusion models.
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| Contributions

* Prove that the continuous probability flow is the Monge optimal

transport map under certain conditions.

* Proposed a Discrete Probability Flow (DPF) under the framework of
optimal transport.

* Proposed a novel sampling method based on the DPF, significantly

decrease the uncertainty of the sampling outcomes.
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| Motivation

The Kolmogorov forward equation for discrete diffusion model is:

d . . -/
YT
j'

where Pji,(tls) means P(x; = jlxg = i), 1,j are states, and Qp, is defined as:

B 1, dD(l,]) — 1,
i _ 4 — i.,, d ) = O,
QDJ' zj’e{k:dp(i,k)=1} QD] p(0.))
0, otherwise,

e

where d is the Manhattan distance. However, the process defined by Qp is not an

optimal transport map, as there exist mutual flows between the states. (i.e., there

exists two states i, j with QD;'. > (0 and QD{ > (). This process is not an OT Plan. I
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| Method

To tackle the mutual flow, we modified the transition rate Q as:

 ReLU(Pp,(8) = Pp (1)
Pp,(t) ’

i. = =5 =3 i-lt ) d (ll):O1
HE) Z,-re{k:dp(i,k)ﬂ} Qp () p(l,J

dD(l,]) — 1,

_ 0, otherwise.

The ReLLU operation ensures that high probability states can only transition to
lower probability states in one direction, effectively preventing mutual flow.
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| Important Proposition

Proposition 5. The processes generated by Q, and Q have the same
single-time marginal distribution ¥t > 0.

Proposition 6. Given any t > 0, there exists a 6; > 0s.t.V0 < s < §;, the
process generated by Q provides an optimal transport map from Pp(t) to
Py (t + s) under the cost d,.
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| sampling

With the above proposition, we proposed a novel sampling method based on

DPF, and the generator of the reverse process is:

PB; s, ()
— o=

- 1), dp(i,j) = land i; # j;,
Dll|l\ll( )

Higl= = =) Ry(), o)) =0
Jj'e{k:dp(i,k)=1}

- 0, otherwise.

Based on the above reverse transition rate, we can use Euler’s method to
generate samples.
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| Quantitative Results on Toy Dataset

Table 2: Comparison of certainty for SDDM and DPF, in terms of C'S D on 4,000 initial points, each
of which has 10 generated samples. Lower values indicate superior certainty.

2spirals  8gaussians checkerboard circles  moons pinwheel swissroll
) discrete dimension = 32, state size = 2
SDDM 14.3053 14.1882 14.7433 14.4327 14.1739 14.0450 14.0548
DPF (ours) | 2.1719 1.7945 2.0693 1.7210  2.0573 2.1834 1.8892
discrete dimension = 16, state size =5
SDDM 14.4645 14.6143 14.6963 144807 14.2397 14.2466 14.2659
DPF (ours) | 1.9711 1.9367 1.4172 1.7185 1.7668 1.9633 1.6665
discrete dimension = 12, state size = 10
SDDM [2.8463 [2.7933 [3.0158 [2.9232 12.6665 12.7634 12.7880
DPF (ours) | 1.8123 1.3178 1.1348 1.4625 1.4859 1.8435 1.5227
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SDDM

DPF

2spirals 8gaussians  checkerboard circles moons pinwheel swissroll

Figure 2: Visualization of the generating certainty on generated binary samples for SDDM and DPE.
All the samples (in blue) are randomly generated from the single initial point (in red).

SDDM

DPF

2spirals 8gaussians  checkerboard circles moons pinwheel swissroll X7

Figure 3: Visualization of the generated binary samples from the given initial points . Different
colors distinguish the generated samples from different initial points x.
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| Quantitative Results on CiFar-10

Table 8: Comparison of certainty for 7LDR-0 and DPF on the Cifar-10 dataset. Here, C'S' D , class-std,
and class-entropy are calculated on 1,000 initial points, each of which has 10 generated images.
Lower values indicate superior certainty.

CSD  class-std class-entropy

TLDR-0 [7] | 57.6898  2.6628 1.7703
DPF (ours) | 9.4420 1.1819 0.5291
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|V|suaI|zat|on Results on CiFar-10
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THANKS

https://github.com/PangzeCheung/D
iscrete-Probability-Flow.




