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Causal Representation Learning (CRL) & Independent Component Analysis (ICA)

Causal Representation Learning (CRL) (Schölkopf et al., 2021) aims to identify causally
related latent variables, together with a causal graph encoding their relationships.

CRL provides a principled definition of disentanglement (Bengio et al., 2013).

Difficult problem; vast (and growing) literature, often based on strong assumptions.

Counterfactual data (von Kügelgen∗ et al., 2021; Brehmer et al., 2022); Temporal structure (and graph sparsity)
(Lachapelle and Lacoste-Julien, 2022; Lippe et al., 2022); Parametric family of latent distributions (Lachapelle,
Rodriguez, et al., 2022; Squires et al., 2023; Buchholz et al., 2023); Strong restrictions on the mixing function class
(e.g., linear, parametric) (Squires et al., 2023; Varici et al., 2023; Ahuja et al., 2022).

Independent Component Analysis (ICA) (Comon, 1994) aims to recover independent
latent variables from observed mixtures thereof.

It is a special case of CRL, where the latent graph is known and empty.
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Causal Component Analysis (CauCA)

CRL is challenging: Both the graph and the unmixing are unknown.

We introduce Causal Component Analysis (CauCA):
• Special case of CRL, presupposes knowledge of the causal graph;
• Generalization of ICA, causal components which support interventions.
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Causal Bayesian networks (CBNs) and interventions (Pearl, 2009)

In a CBN with graph G, the conditional probabilities Pi
(
Zi | Zpa(i)

)
in the corresponding

Markov factorization are called causal mechanisms. A CBNs consist of:

• a graph G & a collection of causal mechanisms {Pi(Zi | Zpa(i))}i∈[d].
• a collection of (stochastic) interventions {{P̃kj

(
Zj | Zpak(j)

)
}j∈τk}k∈[K]

across K interventional regimes, with τk ⊆ V(G) intervention targets.

The joint probability for interventional regime k is given by:

Pk(Z) :=
{∏d

i=1 Pi(Zi | Zpa(i)) k = 0∏
j∈τk

P̃kj
(
Zj | Zpak(j)

)∏
i/∈τk

Pi
(
Zi | Zpa(i)

)
∀k ∈ [K]

where P0 is the unintervened distribution, and Pk are interventional distributions.

Causal mechanisms are modular:
We can modify some without affecting the others (Pearl, 2009; Peters et al., 2017).
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CauCA based on multiple interventions
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We are given multiple datasets Dk generated by stochastic interventions on Z,

Dk :=

(
τk,

{
x(n,k)

}Nk
n=1

)
, with x(n,k) = f

(
z(n,k)

)
and z(n,k) i.i.d.∼ Pk,

where Pk are nonparametric distributions of z, and f is a diffeomorphism.

Our goal: Identify both the f and the {Pki (zi|zpa(i))}i,k.
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Identifiability results for a nontrivial latent graph

Consider the example where the latent graph is given by z1 → z2 → z3:

Requirement of interventions Learned representation ẑ = f̂−1(x) Reference

1 intervention per node [h1(z1),h2(z1, z2),h3(z1, z2, z3)]
Thm.
4.2 (i)

1 perfect intervention per node [h1(z1),h2(z2),h3(z3)]
Thm.
4.2 (ii)

1 intervention per node for z1 and z2, plus
|pa(3)|(|pa(3)|+1) = 2×3 imperfect inter-
ventions on z3 with “variability” assumption

[h1(z1),h2(z2),h3(z2, z3)] Prop. D.1

1 perfect intervention on z1 and 2+1=3 per-
fect fat-hand interventions on (z2, z3)

[h1(z1),h2(z2, z3),h3(z2, z3)] Thm. 4.5
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Negative results: non-identifiability when some assumptions are violated
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Our paper also contributes 4 non-identifiability results when:

• The assumption of interventional discrepancy is violated;
• At least 1 of the variables is not intervened on (when the graph is not empty);
• At least 2 variables are not intervened on (when the graph is empty, i.e., ICA);
• When the targets of interventions are totally unknown.

These results show that our assumptions are necessary, even for CRL. 6



Identifiability results for a trivial latent graph (ICA)

Consider the example when the latent graph is empty (i.e., no arrows):

Requirement of interventions Learned representation ẑ = f̂−1(x) Reference

1 intervention on any two nodes respectively [h1(z1),h2(z2),h3(z3)] Prop. 4.6

1 intervention on z1 and 2 fat-hand interven-
tions on (z2, z3)

[h1(z1),h2(z2, z3),h3(z2, z3)] Corollary 4.8

1 intervention on z1 and 4 fat-hand interven-
tions on (z2, z3) with ”variability” assumption

[
h1(z1), π[h2(z2),h3(z3)]

]
Prop. 4.9

1 intervention per node on any two nodes re-
spectively with unknown order π [h1(z1),h2(z2),h3(z3)] Prop. E.6

6 fat-hand interventions on (z1, z2, z3) with
”variability” assumption π [h1(z1),h2(z2),h3(z3)]

Hyvärinen et al.,
2019, Thm. 1
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Summary of our main contributions

We introduce a likelihood-based approach using normalizing flows to estimate
both the unmixing function and the causal mechanisms.

Our method effectively recovers the latent causal components in synthetic experiments.
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Conclusion

CauCA simplifies CRL by assuming knowledge of the causal graph.

• Impossibility results for CauCA also apply for CRL.
• Possibility results can inspire corresponding results in CRL.

By studying CauCA, we gain insights into the minimal assumptions required for CRL.
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Thank you for your attention!

Poster Session: Wed 13 Dec 8:45 a.m. PST — 10:45 a.m. PST

Location: Great Hall & Hall B1+B2 #827

Paper: https://arxiv.org/abs/2305.17225

Code: https://github.com/akekic/causal-component-analysis
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