
Machine learning detects
terminal singularities

Tom Coates1, Alexander M. Kasprzyk2, Sara Veneziale1

1Imperial College London (UK), 2University of Nottingham (UK)



Machine Learning for Mathematics

Proposal

An AI-assisted workflow for mathematical problems that are
unapproachable with traditional methods.

Does it have at 
worst terminal 
singularities?

MLP(512,768,512)



The Mathematical Objects

Algebraic geometry is the study of shapes defined by solutions to
systems of polynomial equations. They can be smooth or have
singularities.

Q-Fano varieties are the ‘atoms’ of geometry

They are positively curved shapes with Q-factorial terminal
singularities. Their classification (still open!) is like building a Periodic
Table for geometry.
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Vectorisation

A 2× 10 integer-valued matrix[
a1 · · · a10
b1 · · · b10

]
represents C10 with these points identified

(z1, . . . , z10) ∼ (λa1µb1z1, . . . , λa10µb10z10) .

for any λ, µ 6= 0. This is a toric Fano variety of
F rank two (# rows),
F dimension eight (# columns - # rows).

Why? To make it challenging

F There is already a fast criterion for rank one.
F In low dimensions the problem is easier.
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Symmetries

(1,2) ?M =

[
a2 a1 · · · a10
b2 b1 · · · b10

]

M =

[
a1 a2 · · · a10
b1 b2 · · · b10

]

(
0 1
1 0

)
·M =

[
b1 b2 · · · b10
a1 a2 · · · a10

]

S10

GL2(Z)

The standard form [
a1 a2 · · · a10
0 b2 · · · b10

]
with ai, bi ∈ Z≥0, a10 < b10, and the columns cyclically ordered.
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Consequences of the ML Model

The model
A fully connected feedforward neural network predicts terminality with
95% accuracy. It
F inspires a new algorithm to test terminality for toric Fanos.
F allows the exploration of the toric Q-Fano landscape.

# Samples Original Alg New Alg ML Model

1 1x 15x 450x
10 000 1x 15x 30 000x

100MQ-Fano 300 CPUyrs 20 CPUyrs 120 CPUhrs
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Sketching the Landscape

We visualise Q-Fanos in R2 using the growth coefficients of their
quantum period, a conjectured complete invariant. This would have
been impossible without an ML approach.

(a) Q-Fano varieties with rank one; (b) probable Q-Fano varieties in dimension
eight and rank two, coloured by Fano index.


