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Imitation Learning (IL) with Domain Shift
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 Learns behaviors by imitating expert demonstrations without access to true rewards
* Domain shiftin IL: Expert domain (source domain) #+ Agent domain (target domain)
» We focus on the case where the demonstrations are provided as visual observations.



A Problem in Imitation Learning with Domain Shift
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* Due to domain shift, the learner cannot directly mimic the expert demonstration.

* We proposed D3IL (Dual feature extraction and Dual cycle-consistency for Domain
adaptive IL with visual observation) for enhanced feature extraction and policy update.



Methodology

» Qur feature extraction model is built based on the ideas of dual feature extraction,
image generation, and dual cycle consistency.
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Dual Feature Extraction

* The domain feature contains only domain information of the input.
* The behavior feature contains only task-relevant information of the input.
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Image Generation

* The generators produce images that contain domain and behavioral characteristics.
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Dual Cycle-Consistency

* Input images = Images after applying feature extraction and image generation twice

» Features via first-stage feature extraction = Features via second-stage feature extraction
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Reward Generation and Learner Policy Update

* Adversarial learning between reward-generating discriminator D,..,,, and policy mg
* The imitation reward for an observation o; is defined by

7a(ot) = log DreW(BET(Ot)) _ log(l _ DreW(BET(Ot)))
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Experiments

» We evaluated D3IL on imitation learning tasks with various types of domain shifts.
 D3ILis also effective when directly obtaining a target domain expert is challenging.
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Thank You!

* If you have any questions, feel free to ask during the poster session.

» Poster Session 3 (Wed 13 Dec 10:45 a.m. CST — 12:45 p.m. CST)
e Poster Location: Great Hall & Hall B1+B2 #1406

* E-mail: sungho.choi@kaist.ac.kr
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