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Test-time adaptation (TTA)

» Test-time adaptation (TTA) is a special and practical setting in unsupervised domain
adaptation.

* TTA allows a pre-trained model in a source domain to adapt to unlabeled test data in
another target domain
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Fine tuning in pre-trained vision-language models

* Traditional model-based TTA methods rely on computationally intensive tuning to
the parameters of the model backbone.
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 The emerging pre-trained vision-language models (e.g., CLIP, CoOp) only tune the run-
time prompt for target domains.

[1] Radford, Alec, et al. "Learning transferable visual models from natural language supervision." ICML 2021.
[2] Zhou, Kaiyang, et al. "Learning to prompt for vision-language models." [JCV 2022.



Comparison on vision-language model architectures

Prompt <— Prompt <—

v

e
Text Text
\ Encoder \ Encoder / Q

?‘L

= Image [
Image AT e— & Encoder |,
Encoder | \finimize I :

Entropy Unlabeled Images

Q Image
Encoder Slmllanty

Labeled Images Unlabeled Images
(a) CoOp (b) TPT (c¢) Ours

(a) CoOp adapts prompt on labeled data.

(b) TPT optimizes prompt by minimizing marginal entropy.

(c) Ours SwapPrompt leverages self-supervised contrastive learning to facilitate test-time
prompt adaptation



Methodology: SwapPrompt
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» Exponential moving average (EMA) prompt : The EMA of online prompt is used to

update the target prompt

» Prompt swapped prediction mechanism: Based on an augmented view of image and the
online prompt, predict the class assighment of an augmented view of the same image




Workflow of FedoSSL
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(1) Obtain pseudo label: perform inference on the test data with hand-crafted prompts
(e.g., “a photo of a [CLS]”), obtaining their pseudo-labels and classification confidences

Test image x; B =

Pseudo label y; A,

(2) Data selection: filter out potential noisy pseudo labels. For each class, only select the
top K test data with the highest confidence




Workflow of FedoSSL
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@ Prompt swapped prediction loss function:
Lswap(x;) = £(prediction;, prediction;) + £(prediction;, prediction;)

We use the text features generated by the target prompt as prototypes and assign the image
feature of an augmented view of an image to these prototypes to obtain a soft class assignment.
The online prompt is trained to predict this class assignment with a different augmented view of
the same image. The EMA of online prompt is used to update the target prompt.



Workflow of FedoSSL
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Lysendo(x;) = £(prediction,, y;) + £(predictiong,y;)

Considering the inherent generalization ability of pre-trained vision-language model, pseudo-
labels encapsulate the most pre-trained knowledge. SwapPrompt combines L., and Lyseudo

resulting in improved performance compared to using Lyge,q, alone.



Dataset:

ImageNet and its four variants: ImageNet-V2, ImageNet-A, ImageNet-R, ImageNet-
sketch

Nine image classification dataset: Caltech101, DTD, Flowers102, Oxford-Pets,
UCF101, StanfordCars, Food101, EuroSAT, SUN397

Baselines:

1) zero-shot CLIP

2) TPT: a test-time prompt tuning method that minimizes the marginal entropy of
test data

3) UPL: an unsupervised prompt learning approach and we make some
modifications on it to suit the test-time setting

4) CoOp: a supervised few-shot prompt tuning method, be used as an upper bound
performance of test-time prompt adaptation



 Comparison of test-time adaptation methods on 14 datasets. A denotes SwapPrompt’s gain
over the better one of UPL and TPT. ‘+ Online’ denotes SwapPrompt with online test data.

ImageNet-Sketch

Caltech101
DTD
Flowers102
Oxford-Pets
UCF101
StanfordCars
Food101
EuroSAT
SUN397
ImageNet
ImageNet-V2
ImageNet-A
ImageNet-R

Method
CoOp [17] 88.76 54.62 83.98 87.44 66.71 61.83 73.79 61.68 64.33 61.23 55.29 23.41 56.96 35.64

CLIP [16] 85.13 42.16 65.40 83.05 61.15 55.65 74.23 37.60 58.55 58.18 51.36 21.69 55.98 33.33
UPL [24] 86.37 45.04 67.11 88.53 63.63 58.46 74.38 41.40 61.07 61.19 52.07 23.59 57.09 36.40
TPT [19] 87.22 42.17 65.42 84.60 61.18 58.49 74.88 43.82 61.46 60.74 54.35 26.24 58.72 35.02

SwapPrompt 89.90 47.34 70.22 89.14 65.66 59.60 75.08 46.64 63.93 61.80 53.94 24.46 60.88 38.21
A +2.68 +2.30 +3.11 +0.61 +2.03 +1.11 +0.20 +2.82 +2.47 +0.61 -0.41 -1.78 +2.16 +1.81
+ Online 89.69 46.40 68.12 88.97 64.52 58.88 75.66 42.45 63.36 61.41 52.93 24.42 60.25 38.13

SwapPrompt vs. SOTA Baselines:

* Qutperforms TPT by 2.31% accuracy

* Qutperforms UPL by 2.17% accuracy

* Very close even outperform CoOp on many datasets
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Performance Comparison to SOTA Baselines

Accuracy and Efficiency of SwapPrompt:
(a) final accuracy and (b) the relationship between the epoch and the accuracy
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(b) Accuracy of different epochs on 5 datasets

e The average accuracy of SwapPrompt on 5 datasets

. 1 . : .
I;ggavii:;aogneq a;:séa:;/aonnuall eé: S?)Lansgts, with different adpatation epochs, the accuracy of
P P PP ' UPL and TPT is the final epoch average accuracy.

(a) Average accuracy on 14 datasets
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Thank you!

xiaosonglb.ma@connect.polyu.hk
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