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Motivation: Input Sample Rejection
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Selective Classification (SC) with Training Dynamics
Goal: Derive a selection function g : X — R which, given an acceptance threshold 7,
determines whether a model f : X — ) should predict on a data point x.

f(x) g(x)<7
(f.8)(x) = .
i otherwise.

New approach: Selective Classification Training Dynamics (SCTD)
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Rabanser et al. " Selective Classification via Neural Network Training Dynamics.” 2022.
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Differential Privacy

Definition: Differential Privacy

A randomized algorithm M satisfies (e,0) differential privacy, if for any two
datasets D, D’ C D that differ in any one record and any set of outputs S the
following inequality holds:

P[M(D) € S] < &P [M(D') € S] +6

® ¢ ¢ R, specifies the privacy level.
(D= Mes —
e § € [0,1] allows for a small

violation of the bound

® Most popular implementation for -—> Mcs — /\/\>

DP in DNNs is DP-SGD.

close by
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Impacts of SC on DP Guarantees: "SC — DP”

No changes in DP guarantees. Worsened DP guarantee.
Direct Optimization Advanced Sequential Composition
Loss function / architecture Methods iterating over the data
modifications. multiple times, i.e., classical

ensembling methods.

Post-Processin
To maintain overall (5’5)_DP, each

Post-hoc modifications and model needs to satisfy
training-time ensembles (SCTD). ~ (\/LM’ %)—DP.
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Impacts of DP on SC Performance: "DP — SC"
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Differential privacy degrades selective classification performance beyond a loss
in overall utility!
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Consistent SC Evaluations Under DP

Compare performance Upper bound on SC Our accuracy-normalized
y
across SC approaches performance SC score
1 1
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Results on CIFAR-10
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Training DP Models That Know What They Don't Know: Conclusion

Analyzed how SC impacts DP guarantees and how DP impacts SC performance.

Introduced a novel score to disentangle SC performance from baseline utility.

SC performance degrades with stronger privacy (i.e. as ¢ — 0).

® SCTD works best to quantify uncertainty under DP.

Stephan Anvith Abhradeep

Nicolas

[ Check out our paper: https://openreview.net/forum?id=EgCjfivjMB ]
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