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Motivation

Learning from Demonstrations 
(LfD)

Learning from Visual Ovservations
(LfVO)

From LfD to LfVO

 Less Supervision

 Enlarging resource

 Biologically reasonable
Easy to learn 

Hard & expensive annotations
+
-

No actions or rewards

An ocean of Internet videos

Explore unknown expert policy

Hard to extract useful experience

+

-
+
+
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Previous work

Abundant video-only data contain useful behavior patterns. How can we effectively 
leverage them to tackle downstream reward-free visual control tasks? 

 IDM-based methods  – extra component, compounding error

 Adversarial methods  – sample-inefficient online learning schemes 

 Representation-learning-based methods  – over-optimistic estimation 

 Goal-oriented methods  – extra task-specific information



4 

Two-stage framework 

• Pretraining stage: we simultaneously learn a GPT for latent transition 
prediction, an expert transition discriminator for intrinsic rewards and a 
temporal distance regressor (TDR) for temporally-aligned representations.

• Reinforcecment learning stage: agents merely learn from generated 
rewards from discriminator without environmental reward signals.
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Offline Pretraining

1. Predicting Latent Transition

Adversarially learn transition module with L2 
regularization as well as a WGAN discriminator  
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Offline Pretraining

2. Learning Temporally-Aligned Representation

Apply symlog temporal distance prior in 
low-dimensional representation space
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TDR Representation
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Algo: STG Pretraining
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Algo: Online RL
Pretrained WGAN discriminator works as reward function:
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Atari Experiments

Learning from 50 trajectories for each task, STG demonstrates 
superiority among baselines and even surpass expert level.
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Atari Experiments

The rising trend of intrinsic return proves that online collected observation
distribution is getting closer to expert observation distribution during training.
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Minecraft Experiments

In challenging open-ended Minecraft tasks, shows superiority over baselines!



Pretrained on whole Atari datasets, STG-Multi shows comparable performance.
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Multi-Task STG
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Ablation: TDR removal
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Ablation: Reward design



16 

Ablation: Reward design
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Ablation : Loss and Dataset
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Extensions

STG offers an effective solution in situations with plentiful video demonstrations, 
limited environment interactions, and inaccessible labeled action or rewards.

In future work, STG is likely to benefit from:
 more powerful large-scale vision foundation models to facilitate generalization 

across a broader range of related tasks, domains or embodiments.
 hierarchical framework where one-step predicted rewards can be employed for 

training low-level policies and multi-step rewards for a high-level policy to 
tackle long-horizon tasks.
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