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Introduction

. Classically, Transformers are poor at Length Extrapolation (OOD) [1]. But, POS it i O n a I E n COd i n gs u Sed i n

how different Positional Encodings (PEs) affect length generalization?

« Early studies show decoder-only Transformers without PE (NoPE) perform
fine in 1ID [2][3], but how about length generalization?

current LLMs are NOT well-suited

« Our analysis shows NoPE's unexpected superiority over other positional
encodings in length generalization tasks.

« How does NoPE can recover the order without explicit position info? We
attempt to answer this both theoretically and empirically.

for Length Extrapolation.

Evaluation Framework

- Evaluated on 10 synthetic mathematical & reasoning tasks.
. Train on sequence lengths ~ U(1,L) & Test on lengths ~ U(L + 1,2L).

« 100M decoder-only Transformers trained from scratch.

Results No Position Encoding Best
performing

Transformer with No Positional Encoding (NoPE) performs on
T5's Relative Bias . v

par or better than SOTA encoding schemes.

Performance of models trained on the Copy task [4]
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Positional Encoding

Theoretically, we show that a decoder-only Transformer with
NoPE can recover both absolute and relative encoding.

Theorem 1 (Absolute Encoding):

Let x = [<bos>, xi1, ..., x7| be an input sequence of length T + 1 to the model. Then,
there exists a set of weight such that first layer can recover absolute positions |1, . . .

, T + 1] in the hidden state H. Use your camera to scan our QR codes for

the Twitter thread, GitHub repository, and ArXiv paper.

Empirically, on the same inputs, NoPE attention pattern is more
similar to relative encoding, rather than absolute.

Divergence scores computed over SCAN.
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Take-home messages Example of Full Scratchpad format. How position is encoded in Transformers. Proof sketch of Theorem 1:

NoPE can represents absolute order.
« Most popular positional encoding technique (Rotary and ALiBi) do not
perform well on length extrapolation.

« Length Extrapolation on downstream tasks is a suitable test bed for PEs.
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