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Introduction

* Reinforcement Learning (RL) has contributed to a range of sequential decision-making and control
problems: games (Silver et al., 2016), robotic manipulation (Lee et al., 2020), chemical reactions (Zhou
etal., 2017), efficient and targeted COVID-19 border testing via RL (Bastani et al. 2021) Nature,
ChatGPT (https://openai.com/blog/chatgpt/)

* Despite notable successes, practical implementation of RL remains challenging

* Real-world settings pose unique challenges due to costly interactions (Dulac-Arnold et al. 2021,
Google & DeepMind).

* |In a widely-read blog post, Mannor & Tamar, 2023 suggest that RL community focus on “solving
concrete real-world problems” (as opposed to, e.g., Atari benchmarks) & the “deployability” of RL.
*  How can we make RL more efficient and build deployable RL systems and approaches?

* One potential approach to improving sample efficiency is to incorporate additional
structural information about the problem into the learning process

* Examples: Factored decompositions, Latent or contextual MDPs, Block MDPs, Linear MDPs ,
Shape-constrained value and/or policy functions, MDPs adhering to closure under policy
improvement, Multi-timescale or hierarchical MDPs.


https://openai.com/blog/chatgpt/

Weakly Coupled MDPs (WCMDPs)

A broad class of sequential decision-making problems. We leverage their inherent structure through a
tailored RL approach.

* Multiple independent subproblems: s = (s4, ..., Sy) where s; = (x;, w) is the state of subproblem
i €{1,..,N},P(s'|s,a) = I}, P(s{|s;, a;) and q(w'|w),r(s,a) = X, r:(s;, a;)
*  Coupling constraint on action space A. Feasible actions:

A(s) = {a €AY d;(s;,a;) < b(W)} where d;(s;,a;), b(w) € R?

Bellman equation / ° \
Q*(s,a) =Ey _p(saylr +v L Q*(s’,a’)ls, a] aid
Real-world applications: supply chain management, recommender systems, BEn
EV charging, online advertising, revenue management, stochastic job scheduling, etc. @@+ @<
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* Exponential growth of state and action spaces

* Intractability with naive RL algorithms



Lagrangian Relaxation

An approximation technique that decomposes WCMDPs
* by relaxing the linking constraints to obtain separate subproblems
* these separate problems are much easier to solve when considered individually

Forany A € R, let

N
Q*(s,a) =r(s,a) + A" (b(W) - z d;(si, ai)> + YE [rr,lgﬁ QA (s, a)|(s, a)]
i=1
Proposition

. (Weak Duality). Q*(s, @) < Q*(s,a) forany, A € RY, a € A(S)

. (Decomposition)| Q*(s,a) = ATB(w) + Z’iv=1 Q{l(si, a;),|where

QA(s;, a;) = 1i(s;,a;) — ATd;(s;,a;) + VE [;peng{l(s{, a{)] and B(w) = b(w) +y E[B(W")]
Lagrangian dual problem:

QY (s,a) = min Q*(s,a)



Weakly Coupled Q-learning (WCQL)

Main idea is to use the collected experience t efficiently by learning from the full problem
experience using a main agent and at the same time from the subproblems experience t;
using subagents to generate an upper bound on Q*
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Weakly Coupled Q-learning (WCQL)

WCAQL algorithm comprises three main steps
Step 1: Subproblems and Subagents

Qlnsi (s a) = Q(siya) + Bulsi ad[ri(si, a) — ATd(sy, ap) + VmaXa;an(Si; a;)]
Step 2: Learning the Lagrangian Bounds
B,1(w) = Bp(w) + n,(w)[b(w) jV'VBn(W’) — Bp(w)]
0k (5,@ = By W) + D Q1 (50,00)
i=1

Qti(s,@) = T/{lé}\l Q71 (s, @)
Step 3: Q-Learning Guided by Lagrangian Bounds
Qn+1(s, @) = Qn(s, @) + an(s,a) [r(s, a) +y max Qn(s’, a’)]
a'eA(s")

QTIl(S' a) = min(Qrzl'il(s' a)» QTL+1(S' a))



Convergence Guarantees

Theorem (Convergence of WCQL). Under typical assumptions on the
learning rates and the state visit, the following hold with probability 1:

1. ForeachiandA €A, an(si, a;) converges to Q{l’*(si, a;) for all
(5i,a;) € §;XA;

2. ForeachA € A, QA(s,a) = Q*(s,a) as n — oo forall (s,a) € SXA

3. Q',(s,a) convergesto Q*(s,a) forall (s,a) € SXA



Weakly Coupled Deep Q-Networks

Algorithm 2 Weakly Coupled DQN

Initialize main Q-network, subproblems
network, and their target networks

a~ e-greedy(Q) ;
Store transition in buffer —
—

Sample a minibatch and As
sample

Update the subproblems Q-network
using stochastic gradient descent (SGD)

Combine the subproblems to obtain
the Lagrangian upper bounds and
find the best upper bound target

Compute main target and do a stochastic
gradient descent on the soft constrained  |——p
objective

weights 0y, 0;;, and penalty coefficient k.
Output: Approximation {Q,}
forn=0,1,2,...do

el Input: Initialized replay buffer D, Lagrangian multiplier set A, Q-network weights 6, ~, subproblem Q}-network

Choose a,, ~ e-greedy(Q,,)), update B,, ;1 (wy,), and store transition 7, in D. Sample minibatch of transitions 7 from

D along with random sample of A.
Update subproblem network:
fori=1,..., Ndo
Compute targets y*
v = ri(si,ai) — ATdi(si, a5) + 'y]E[ma.xa; QMshal07)],

Perform a gradient descent step on
2
lw(0v) = Esanpanp [Zﬁvzl (v — Q51,055 60)) ] )
end for

Find the best upper bound:
For A € A and a € A(s,,) find Q) (sn, a)

N
Q*(s,a;00) = ATB(w) + Y Q}(si, ai; 6v).-
=1

Set Q%‘ (8n,a) = minxea Q%(Sm a).
Compute target yyr

yu =r(s,a) +E {n;z]xxineix Qs a'; 05)].

Update main network:
Compute target y

y =r(s,a) +7E[max, Q'(s,2;67)]
Perform a gradient descent step on
(6) = Exaprvu| (v — Q'(5,26))° + (@ (5,850) — y) ]

end for

Remarks:

1.

Knowledge of environment
dynamics is not required
We use a single network to
learn the all subproblems
action-values by augmenting
the subproblem state and
the subproblem number
Since the As are decoupled
from the transitions, each
environment transition can
be used to learn Q* for a
large sample of As




Numerical Experiments

Weakly Coupled Q-learning

* EV Charging with Exogenous Electricity Cost (Yu et al . 2018)
* N=3 charging spots; available charging spots depends on electricity cost
* Vehicles arrive with a random charging load and duration
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Numerical Experiments

Weakly Coupled Deep Q-Networks

* Multi-product Inventory Control with an
Exogenous Production Rate (Hodge and
Glazebrook 2011)

* Resource allocation for a facility that manufactures
K=10 products

* Production rates depend on resource allocation
and exogenous factors

* In total there are 31° total actions and a
continuous state space

* Online Stochastic Ad Matching (Feldman et al.,
2009)
* Matching N=6 advertisers to arriving impressions

* Advertiser states represent the number of
remaining ads to display

* Rewards depend on the impression type
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