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Main Contribution

On the Stability-Plasticity Dilemma in Continual S b

- Unified theoretical framework for continual meta-learning in both static

and shifting task environments.
- Formal analysis of the bi-level learning-forgetting trade-off
- Theoretically grounded algorithm
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Figure 1. Illustration of Continual Meta-Learning (CML) process

- Base learner — batch learning algorithms W; = A(uy, Si), uy € U
= Excess Risk:

Rexcess(A, ur) = = Es Evwie Py, 1L1(Wh) = Ly, (w)], wif = argmingcyy £, (w).
= meta-parameter u; = (S, ¢¢)
« Unified form of excess risk upper bound for A € {Gibbs, RLM, SGD, SGLD}:

Filwr) = Ky (a@ y Mol rato | At>, ki, €0, B, A € R, WE € [T],a,b, ¢ > 0.
= f; is convex
- Meta learner — online learning algorithms
= dynamic regret for NV static slots

R%ynamiC(uT:N) def 2521 Ziw:nl [fn,k'(un,k) _ fn,k(u:)} ,u;‘; o arg Hlil’lu Min Zk]y:nl fn,k‘(u>

- Continual meta-learning objective
— select w17 to minimize the Average Excess Risk (AER):

My,

N

def namlc * 1 2 : *

AERT § Rexcess —A Ut) < TRdy —|_ fn,k(un>
t 1 nzl k=1

DCML Algorithm

— For any timestep t € [T]

= Sample task distribution p; ~ 7, Sample dataset S; ~

= Get meta parameter u; = (5, ¢;), learn base parameter w; = A(uy, Sy), estimate f(uy)
= Adjust the learning rate of the meta-parameter (7;) with the following strategy:

= When an environment change is detected, 7; is set to a large hopping rate v = p
= For k-th task inside the n-th environment (slot), 3 = vo/Vk

= Update meta parameter w1 = Hy(ur — 1V fi(uy)), i.e., 2
b —_
Gri1 = (1 — MW + 2b27 wh, Brar = B — yilar, — 20 gzy terte))

Contact Information

- Email: qi.chen.1@Qulaval.ca
- Code: https://github.com/livreQ /DynamicCML
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Bi-level Learning-Forgetting Trade-off Experiments
- task-level learning-forgetting trade-oft Environment 1 : Environment 2 Environment N
- two tasks le _wQH ~ l’jl/Q T =..=TK, = E1 - Tk =...=7Tk, = B TKy 141 =---= Tky = En
Je : Az
= directly adapt Nor ) r A
=> catastrophic forgetting Random Initialization Task Task Task Task | Task Task
. keep the Optimal prior qb: or Pre-trained Env 7 7 1, pr1 | L, Bysl| —
:> nO forgettglg d ﬁ I_ - - - - - - = = = _.- s E = E EEE E N EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE . t )
T < 2 and [|¢T — ws|| < 2 1— : . '
. k% 1H 1/ H¢1 2H 1/ p p 0.5 Omniglot (A) A
n 0.25
=> 1 number of examples to recover MNIST (B) New Alphabet (B)
performance . 0.2 I
FMNIST (C) Fonis () |,

- meta-level learnmg—forgettlng trade-off
= large environment shift D> D,
= T learning rate of meta-knowledge

Figure 2. Illustration of a shifting environment. = 1 forgetting meta-knowledge inside slots

Moving 2D Gaussian Omniglot-MNIST-FMNIST (OMF) Dataset Large Concept Shift Synbols Dataset

Every environment is distinct:
E, # Ey #...# Ey,
number of environments: N = T'p

Re-visitable environments, number of distinct environments: 3
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| P(Ejy, = A) = 0.5, P(E;4, = B) = 0.25, P(E; ;1 = C) = 0.25.

Figure 3. Illustration of the CML experimental setting on synthetic and real datasets. At each time ¢,
the environment changes with probability p. If current environment is 7 = E;, the next environment

P(ri41=Eiy1) =p, Py = E)=1-p.

Main Theorem

Theorem 1 (Simplified) Consider both static and shifting environments. If the excess risk’s
upper bound of the base learner A(uy, Sy) can be formulated as the unified form, then, the AER. of
DCML is upper bounded by:
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= Task-level regret <=> slot diameters D, (task similarities) 0.92
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= Single-task learning O ((D +1)m H 4) 0 2000 4000 6000 8000 10000 0.2 0.4 0.6 0.8 1.0
= Static environments O((V + 1)m_1/ 1) with rate O(1/ VT), ‘ Probability of environment change
= Shifting environments O((V + 1)m /%) with rate O(1/vV M),V <V <D < D (c) (d)

Figure 4. Running time average test accuracy on OMF dataset of OSAKA benchmark: (a) Omniglot
(pre-trained environment), (b) FashionMNIST and (c¢) MNIST, where the environment shifts with

Theorem 3 (Stochastic Gradient Descent(SGD), simplified) Apply SGD as the base probability p = 0.2. (d) Average test accuracy on overall environment at final step ¢ = 10000 w.r.t p.
learner in DCML and further assume that each slot has equal length M and each task uses the
sample number m. Then, the AER can be bounded by:

» => Same AER with a smaller M, i.e., faster-constructing meta-knowledge in new environments.

- better overall learning-forgetting trade-oft
- stable to different levels of non-stationarity
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= recover static regret O(V + \/LT) % + % = better than O(V + \/LM + \V Z\f_M) 9-‘ g&gg?é—simi?gysﬁrgag N SE B c bn n qu
o CRSNG @i ilw

i

[ '
| ]
T


mailto:qi.chen.1@ulaval.ca
https://github.com/livreQ/DynamicCML

