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Main Contribution

Unified theoretical framework for continual meta-learning in both static
and shifting task environments.
Formal analysis of the bi-level learning-forgetting trade-off
Theoretically grounded algorithm

Problem Setup

Figure 1. Illustration of Continual Meta-Learning (CML) process

Base learner — batch learning algorithms Wt = A(ut, St), ut ∈ U
Excess Risk:

Rexcess(A, ut)
def= ESt

EWt∼PWt|St,ut
[Lµt

(Wt) − Lµt
(w∗

t )] , w∗
t = arg minw∈W Lµt

(w).
meta-parameter ut = (βt, φt)
Unified form of excess risk upper bound for A ∈ {Gibbs, RLM, SGD, SGLD}:

ft(ut) = κt

(
aβt + b‖φt−wt‖2+εt+ε0

βt
+ ∆t

)
, κt, εt, βt, ∆t ∈ R+, ∀t ∈ [T ], a, b, ε0 > 0.

ft is convex
Meta learner — online learning algorithms

dynamic regret for N static slots
Rdynamic

T (u∗
1:N) def=

∑N
n=1
∑Mn

k=1 [fn,k(un,k) − fn,k(u∗
n)] , u∗

n
def= arg minu

1
Mn

∑Mn

k=1 fn,k(u).

Continual meta-learning objective
— select u1:T to minimize the Average Excess Risk (AER):

AERT
A

def= 1
T

T∑
t=1

Rexcess(A, ut) ≤ 1
T

Rdynamic
T (u∗

1:N) + 1
T

N∑
n=1

Mn∑
k=1

fn,k(u∗
n) .

DCMLAlgorithm
For any timestep t ∈ [T ]
Sample task distribution µt ∼ τt, Sample dataset St ∼ µt;
Get meta parameter ut = (βt, φt), learn base parameter wt = A(ut, St), estimate ft(ut)
Adjust the learning rate of the meta-parameter (γt) with the following strategy:

When an environment change is detected, γt is set to a large hopping rate γt = ρ
For k-th task inside the n-th environment (slot), γt = γ0/

√
k

Update meta parameter ut+1 = ΠU(ut − γt∇ft(ut)), i.e.,
φt+1 = (1 − 2bκtγt

βt
)φt + 2bκtγt

βt
wt, βt+1 = βt − γt(aκt − κt(b‖φt−wt‖2+εt+ε0)

βt
2 )

Contact Information

Email: qi.chen.1@ulaval.ca
Code: https://github.com/livreQ/DynamicCML
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Bi-level Learning-Forgetting Trade-off

Figure 2. Illustration of a shifting environment.

task-level learning-forgetting trade-off
two tasks ‖w1 − w2‖ > D̂1/2
directly adapt
=> catastrophic forgetting
keep the optimal prior φ∗

n

=> no forgetting
‖φ∗

1 − w1‖ < D̂1/2 and ‖φ∗
1 − w2‖ < D̂1/2

↑ D̂n

=> ↑ number of examples to recover
performance

meta-level learning-forgetting trade-off
large environment shift D̂ � D̂n

↑ learning rate of meta-knowledge
↑ forgetting meta-knowledge inside slots

Main Theorem

Theorem 1 (Simplified) Consider both static and shifting environments. If the excess risk’s
upper bound of the base learner A(ut, St) can be formulated as the unified form, then, the AER of
DCML is upper bounded by:

AERT
A ≤ 2

T

N∑
n=1

√
a(bV 2

n + εn + ε0)κn + ∆n

2︸ ︷︷ ︸
optimal trade-off in hindsight

+ 3
2T

N∑
n=1

D̃nGn

√
Mn − 1︸ ︷︷ ︸

average regret over slots

+ D̃max

T

√√√√2P ∗
N∑

n=1
G2

n︸ ︷︷ ︸
regret w.r.t environment shift

,

where subscript n, k indicate k-th task in n-th slot, εn, ε0, κn are related to sample number for each
task, P ∗ =

∑N−1
n=1 ‖u∗

n − u∗
n+1‖ + 1 is the path length.

Optimal trade-off <=> average of slot variances V 2
n (task similarities)

Task-level regret <=> slot diameters D̃n (task similarities)
Environment-level regret <=> path length P ∗ (environment similarities, non-stationarity)

AER Bounds of Specific Base Learners

Theorem 2 (Gibbs Algorithm, simplified) Apply Gibbs algorithm as the base learner in
DCML and further assume that each slot has equal length M and each task uses the sample
number m. Then, the AER can be bounded by:

AERT
Gibbs ≤ O

(
1 + V̄ +

√
MN +

√
P ∗

M
√

N

)
1

m
1
4
, V̄

def= 1
N

N∑
n=1

Vn .

Single-task learning O
(
(D + 1)m−1/4)

Static environments O((V + 1)m−1/4) with rate O(1/
√

T ),
Shifting environments O((V̄ + 1)m−1/4) with rate O(1/

√
M), V̄ ≤ V ≤ D̂ ≤ D

=> Same AER with a smaller M , i.e., faster-constructing meta-knowledge in new environments.

Theorem 3 (Stochastic Gradient Descent(SGD), simplified) Apply SGD as the base
learner in DCML and further assume that each slot has equal length M and each task uses the
sample number m. Then, the AER can be bounded by:

AERT
SGD ≤ O

(
V̄ +

√
MN +

√
P ∗

M
√

N

)√
1
K

+ 1
m

, V̄
def= 1

N

N∑
n=1

Vn .

Static environment
N = 1, P ∗ = 1, M = T

recover static regret O(V + 1√
T

)
√

1
K + 1

m

Shifting environment
When N is small and P ∗ is large
better than O(V̄ + 1√

M
+
√

P ∗

NM )

Experiments

Figure 3. Illustration of the CML experimental setting on synthetic and real datasets. At each time t,
the environment changes with probability p. If current environment is τt = Ei, the next environment
P (τt+1 = Ei+1) = p, P (τt+1 = Ei) = 1 − p.
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(d)
Figure 4. Running time average test accuracy on OMF dataset of OSAKA benchmark: (a) Omniglot
(pre-trained environment), (b) FashionMNIST and (c) MNIST, where the environment shifts with
probability p = 0.2. (d) Average test accuracy on overall environment at final step t = 10000 w.r.t p.

better overall learning-forgetting trade-off
stable to different levels of non-stationarity
no need for precise environment shifts detection
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