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Background

] Brain Signal

— Electrical impulses that are generated by brain neurons, providing
important information about brain activity.

1 Two Monitoring Ways
— Scalp EEG: through electrodes placed on the scalp.
— Intracranial EEG: through intracranial electrodes that implants into

brain tissue directly.

Intracranial EEG

Scalp EEG



Background
1 Intracranial Neural Signal IEEG)

— Recorded by deep electrodes inside human brains.
— Provide stereotactic information from deeper brain structures.

— Furnish more abundant and detailed analysis about brain wave
patterns.




Modeling Intracranial Signal: Insights

1 Long-term Dependency

— @Gradual changes in brain activity may only be captured by the long-
period analysis.

1 Spatial Correlation

— Due to the fact that brain waves propagate through different brain
regions, signals recorded from different channels can be spatially
correlated.

J Time and Frequency Domains

— Time domain: information about the amplitude and duration.

— Frequency domain: underlying oscillatory patterns and rhythms.



Brant

1 Patching
1 Randomly Masking

— As the pre-training task 1s mask-reconstruction

Record

Masked patches



Brant

1 Frequency Encoding
— To add frequency domain information to the encoding

— The frequency encoding F; . of patch p; . 1s obtained as the
weighted sum of the learnable encodings of each frequency band.

Record
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Brant
| T = [

° | W ro'p’]-': : - C‘ |
1 Input Encoding A A
— For each sequence of patches pj.j11—1, , we use a linear projectionT

and add the positional encoding and the frequency encoding

Record )

Masked patches o - -



Brant

J Temporal Encoder: Long-term Dependency

— The input encoding will be fed into the temporal encoder to obtain
temporal hidden representations h;.j,;_4 .

Record

| Input Encoding | . v

Temporal Encoder

Masked patches
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Brant

1 Spatial Encoder: Channel Spatial Correlation

— The spatial encoder further captures the spatial correlation across
channels, which outputs the final representations z;.;,;_1 .

Record
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Brant
1 SSL Task: Mask-Reconstruction

— The final representations will be fed into a flatten layer with linear
head to get the reconstructed patches Pj. ;41 -

— The loss is calculated between p;.jy—1 and Pj.jyp—1 -

Record
-, P : l | pj:j+L—1 ﬁj:j—i—L—l( I ) """"""
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"""""""""""""""""""""""""""""""""""""""""""""" zj'j—;—L—l HEEE ENN EEN EEE EEEm
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MW Temporal representations EEE EEE EEE EEE Jig+L—=1 """ Spatial Encoder
BEm Final representations HEE [ ] [ Itl [ ] [ y

10



Brant

1 The Largest Model on Brain Signals

— Using the method above, Brant 1s pre-trained on a large intracranial
dataset with 1.01 TB data, containing more than 500M parameters.
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Experiments

d Overall Performance

— Brant achieves consistent SOTA performance on a variety of
tasks compared with other baselines.

— Brant
Brant (our model) — Brant-Freeze
Short-term Signal
Forecasting (MAE)
0.40
Long-term Signal Salzire
Forecasting Detection
(MAE) (F2)
60.00

0.00 0.15

Frequency Imputation
Forecasting (MAE)
(MAE)

0.61
Phase Forecasting (PLV)
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Please refer to the paper for detailed results.
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Model Analysis

] Low-resource Labeled Data Evaluation

— In medical scenarios, collecting labeled data 1s a huge investment...

200 minutes 60 minutes 20 minutes
Model

F2 F2 Decrease F2 Decrease
SEEG-Net [9] *42.28+1.10 35.54+1.90 1594% 12.76+2.13 69.82%
RP [11;7 29.59+1.97 27.62+2.03 *6.66%  25.05+1.98 15.34%
TS [17] 34.57+1.66 30.15+3.05 12.79%  29.61+334  *14.35%
CPC [17] 37.96+142  30.55+301 19.52%  29.57+374  22.10%
BENDR [18] 33.77+1.381 25.37+3.12 24.87%  22.18+4.09 34.32%
MVTS [19] 35.90+1.94 26.62+3.11 25.85%  24.39+4.01 32.06%
BrainBERT [20] 43.60+0.98 41.93+2.09 3.84% 36.35+3.23 16.63%
PatchTST [27] 23.27+1.26 18.02+2.23 22.55% 17.07+211 26.64%
TS-TCC [39] 27.91+1.19 25.35+2.07 9.17% 20.36+1.9 27.05%
TF-C [38] 19.02+1.24 15.97+1.23 16.04%  13.66+2.10 28.18%
CoST [37] 40.03+188  *39.18+3.02 212% 36.10+4.12 9.82%
Brant 56.50+1.08 52.30+2.04 7.43%  51.03+2.74 9.68%




Model Analysis

] Low-resource Labeled Data Evaluation

— In medical scenarios, collecting labeled data 1s a huge investment...
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200 minutes 60 minutes 20 minutes
Model

F2 F2 Decrease F2 Decrease
SEEG-Net [9] *42 28+1.10 35.54;};.19.0.___LS.QéL%___L?_Zé.ﬁu}.___.69.82_0/a____l
RP [17] 20591197 27624 Brant maintains the. most stable !
TS [171 34.57+166  30.154 performance on 20-min labeled data.;
CPC [17] 37964142 30.5540T"""T9NZ T 29 STEIN T ILTOY
BENDR [18] 33.77+1.381 25.37+3.12 24.87%  22.18+4.09 34.32%
MVTS [19] - 35.90+1.94 26.62+3.11 25.85%  24.39+4.01 32.06%
BrainBERT [20] 43.60+0.98 41.93+2.09 3.84% 36.35+3.23 16.63%
PatchTST [27] 23.27+1.26 18.02+2.23 22.55% 17.07+211 26.64%
TS-TCC [39] 2791+1.19 25.35+2.07 9.17%  20.36+1.90 27.05%
TF-C [38] 19.02+1.24 15.97+1.23 16.04%  13.66+2.10 28.18%
CoST [37] 40.03+188  *39.18+3.02 212% 36.10+4.12 9.82%
Brant 56.50+1.08 52.30+2.04 7.43%  51.03+2.74 9.68%




Model Analysis

] Low-resource Labeled Data Evaluation
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— In medical scenarios, collecting labeled data 1s a huge investment...

Model 200 minutes 60 minutes 20 minutes
T — ) 217 - Decrease - E2 ____ Decrease__

SEEG-Net [9] 40, 28: F2 score of our model on 20-min labeled data
RP [17] 29.59 is even higher than that of the best baseline

TS [17] 34,57 on 200-min labeled data.

CPC [17] 37.96 11T~ FSUSSENT "~ 19529 =~ 29 373~ K LL IO
BENDR [18§] 33.77+1.81 25.37+3.12 24.87%  22.18+4.09 34.32%
MVTS [19] 35.90+194 | 26.62+3.11 25.85%  24.39+401 32.06%

BrainBERT [20]

43.60+0.98 41.93+2.09 3.84%  36.35+3.23 16.63%

PatchTST [27]
TS-TCC [39]
TF-C [38]
CoST [37]

23.27+1.26 18.02+2.23 22.55% 17.07+2.11 26.64%
27.91+1.19 25.35+2.07 9.17% 20.36+1.90 27.05%
19.02+1.24 15.97+1.23 16.04% 13.66+2.10 28.18%
40.03+1.88  *39.18+3.02 212%  36.10+4.12 9.82%

Brant

56.50+1.08 52.30+2.04 7.43%  51.03+2.74 9.68%




Model Analysis

1 Representation Analysis

— We visualize the pre-trained representations of Brant and three most
representative methods using t-SNE.

[ -

i Compared to other methods, the representations
of seizure and normal signals learned from Brant
are separated more clearly.

Brant (our model) CPC BrainBERT CoST

16



Model Analysis
1 Model Scale Analysis

— As the model size increases,

* the performances show an overall upward trend, indicating that a larger
model with a higher capacity results in better ability.

* the decrease in the standard deviation indicates more stable performance for
larger models.

Short- & long-term Signal Forecasting Frequency-phase Forecasting Imputation Seizure Detection
0.80 = 1.0
—_— ., , 0.600- 0.275 00 |
0.75 -0.009
0.250 0.8 =
0.70 : short-term MAE _ — S =
el 0595 -0.008 0.225
0.65 A long-term MSE
0.200 0.6
0.60 0.590- -0.007 !
. - 0.175 e ///
0.55 -0.006 N 0.4
) 0.150
0.50 T~ 028 > N\
— =0,005 0:125 Y 0.2 S
0.45 0.580- 0.100 BN + Prec
—e— phase PLV -0.004 \‘ + I::c
0.40 —e— frequency MAE 0.075 0.0
70 100 250 500 70 100 250 500 70 100 250 500 70 100 250 500
Parameters / M Parameters / M Parameters / M Parameters / M
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Conclusions

1 We propose a task-agnostic foundation model, Brant, which is the
largest pre-training model on brain signals.

d Experimentally, Brant achieves consistent SOTA performance on
various downstream tasks w.r.t. medical scenarios.

J Brant 1s an off-the-shelf model with its code and weights, which can
directly participate in other medical research and treatment.
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