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m Treatment effect estimation: estimate the following causal estimands from data:

® Average Treatment Effect: ATE := E[Yr=1] — E[Y7=

o]

® Conditional Average Treatment Effect: CATE := E[Y;-|X]
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(a) Single-learner [1]

[1] Kiinzel, Séren R, et al. "Metalearners for estimating heterogeneous treatment effects using machine learning." PNAS, 2019.

(b) Two-learner [1]
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m Selection bias: the causation T—Y is confounded by the association T — X =Y

® |t is falsely introduced in data generation process.
® |t manifests as the discrepancies of covariates (X) across treatment groups.
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RCT to tackle selection bias ":j.;r

m RCT is a golden approach to eliminate confounding bias. Why?
® Randomization makes covariate balance: P(X|T =1) = P(X|T = 0),T L X
® Covariate balance makes association is causation: P(Y |do(T =¢)) = P(Y|T = ©)
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Adjustment as an alternative to RCT ":j.;r

m RCT is a golden approach to eliminate confounding bias. Why?
®—Randemization-Adjustment makes covariate balance: P(X|T = 1) = P(X|T = 0),T L X
® Covariate balance makes association is causation: P(Y |do(T =¢)) = P(Y|T = ©)
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Previous Work

m Goal: generate balanced distribution between different treatment groups.

m CounterFactual Regression [2]: project covariates to a balanced representation space.
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Theorem A.1. Let 1) and ¢ be the maps in Definition 2.2, F be a predefined sufficiently large function
Jamily of ¢, IPM x be the integral probability metric induced by F. Assume there exists a constant
By, > 0, such that for t € {0, 1}, B_lw Ay (1) € F holds. Uri et al. [03 ] demonstrate:

epere (Y, 0) <2 (ef O(V.¢) +ep ' (10, ¢0) + ByIPMg (P~ PU0) - 207),  (24)
where ;™" and e,~" follow Definition A.3, P},™" (1) and ;™ () follow Definition A.4.

[2] Shalit, Uri et al. "Estimating individual treatment effect: generalization bounds and algorithms." ICML, 2017.



Previous Work

Adjustment with CFR

m Core of CFR [2]: accurate calculation of distribution discrepancy.
® Inaccurate discrepancy->false update of estimators->biased inference
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m Research problem: How to devise discrepancy that can be accurately calculated in the

specific context of causal inference?

m Current divergences fail in the situations as follows:

Free of adversarial training

Non-overlapped supports v X
Mini-batch sampling effects X X
Unobserved confounding effects X X

[2] Shalit, Uri et al. "Estimating individual treatment effect: generalization bounds and algorithms." ICML, 2017.
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m Optimal Transport (OT): For empirical distributions a« and g with n and m samples, OT aims
to find an optimal plan = € R?*™ that minimizes the transport cost between « and g .
Formally, the problem is defined as:

W(a, B) = nerl%io?ﬁ)(c, T, (e, B) = {m € R 11, = a,n’1, = b}

where W(a, B) is the transport cost, € € RY*™ denotes the sample-wise distance between a and
B. 1, and 1, are column vectors filled with ones. a and b specify the mass of units in « and B.

m  We formulate causal inference as an OT problem, where the discrepancy in CFR is
computed as the OT cost between the treatment groups.

® Unbiased estimator with theoretical foundations.
® Numerical stability compared with other discrepancy measures (GAN, f-divergence).

® Flexibility to incorporate task properties by editing the transport problem.



Methodology
Minibatch sampling effect issue with CFR

m  Minibatch sampling effect.
® Minibatch-level outliers, see Fig.2 (b).

® Minibatch-level outcomeimbalance, see Fig.2 (c).

m  Why does it exist?

Theorem 3.1. Ler ¢ and ¢ be the representation mapping and factual outcome mapping, respectively;
W., be the group discrepancy at a mini-batch level. With the probability of at least 1 — 6, we have:

epeue (v, 0) < 2[ep (1, 0) + b (1, 0) + By Wy, — 203 + 0(% 1, (7

where ¢&=" and €=" are the expected errors of factual outcome estimation, N is the baich size, oy

is the variance of outcomes, By, is a constant term, and O(-) is a sampling complexity term.

m How to solve it?

Definition 3.2. For empirical distributions o and 3 with n and m units, respectively, optimal transport
with relaxed mass-preserving constraint seeks the transport strategy ™ at the minimum cost:

W (a, ) = (D, ) 7 := argmin (D, ) — eH(m) |+ 5(Diy,(71m,a) + Dgp (7 1, b)) | (9)

where D € R7*™ is the unit-wise distance, and a, b indicate the mass of units in cc and 3, respectively.

Corollary 3.1. For empirical distributions «, 8 with n and m units, respectively, adding an outlier
a’ to o and denoting the disturbed distribution as o', we have

WOr (o, B) = WO (v, B) < 26(1 — e Zven (0026 1y 4 1)), (10)
which is upper bounded by 2x[(n + 1). WO¥ is the unbalanced discrepancy as per Definition 3.2.
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Figure 2: Optimal transport plan (upper) and its
geometric interpretation (down) in three cases,
where the connection strength depicts the trans-
ported mass. Different colors (vertical posi-
tions) indicate different treatments (outcomes).
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Figure 4: Geometric interpretation of OT plan
with RMPR under the outcome imbalance (up-
per) and outlier (down) settings. The dark area
indicates the transported mass of a unit, i.e.,
marginal of the transport matrix 7. The light
area indicates the total mass.
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m Effect of unobserved confounders.

T Y T Y
® Invalidate backdoor adjustment. @ &)
Figure 3: Causal graphs with _(a) and w/o (b)
® Mislead the update of treatment effect estimator e nclicaten the mioion contounder X

node indicates the hidden confounder X"”.
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m How to solve it? SN x
-4 ( 4 4 N
-8 In(z) -8 2sin(w)
14 2 T=0 _ ,,T=0||? =1 _ T=1||*)] * "
[ ] Dl] = ||rl —_ 'r] || —I— ’}/ ||yl —_ y] || -I— ||yl —_— y] || (a) Toy example (b) Good cases (c) Bad cases
Proximal Factual Ou'tcome Regularizer Figure 9: A diagram showing how PFOR works and its limitations. (a) A toy example of PFOR,

where R and X' indicate the balanced representations and an unobserved confounder, respectively;
scatters indicate the empirical distribution of units in the treated and control groups; for solid scatters
with balanced R, the colored dashed line indicates the ground truth outcome Y = \/R? + R3 + X2
in each group, the black dashed line measures the difference of unobserved X'. (b) Cases that
satisfy Assumption D.1, where the the outcome Y is monotone with unobserved X’ given observed
confounders in R. (c) Cases that violate Assumption D.1, where the Y is non-monotone with X".

m Limitations.

® Partial identification of transport strategy given monotonic covariate effect.

® OT meets partial identification: an interesting topic which warrants further investigation
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Experiments

Table 1: Performance (meanzstd) on the PEHE and AUUC metrics. “*” marks the baseline estimators
that ESCFR outperforms significantly at p-value < 0.05 over paired samples t-test.

Dataset ACIC (PEHE) IHDP (PEHE) ACIC (AUUC) [HDP (AUUC)
Model In-sample Out-sample In-sample Out-sample In-sample Out-sample In-sample Out-sample
OLS 3.749+0.080* 4.340+0.117* 3.856+6.018 5.674+9.026 0.843£0.007  0.496+0.017* 0.652+0.050  0.492+0.032*
R.Forest 3.597+£0.064* 3.399+0.165* 2.635+£3.598 4.671+£9.291 0.902+0.016  0.702+0.026* 0.736+0.142  0.661+0.259
S.Learner 3.572+0.269* 3.636+0.254" 1.706+1.600" 3.038+5.319 0.905+0.041 0.627+0.014* 0.633+0.183  0.702+0.330
T.Learner 3.429+0.142* 3.566+0.248* 1.567+1.136" 2.730+3.627 0.846+0.019  0.632+0.020* 0.651+0.179  0.707+0.333
TARNet 3.236+0.266" 3.254+0.150" 0.749+0.291 1.788+2.812 0.886+0.046  0.662+0.014* 0.654+0.184 0.711+0.329
C.Forest 3.449+0.101* 3.196+0.177* 4.018+5.602* 4.486+8.677 0.717+0.005* 0.709+0.018% 0.643+0.141  0.695+0.294
k-NN 5.605+0.168% 5.892+0.138* 2.208+2.233% 4.319+7.336 0.892+0.007* 0.507+0.034* 0.725+0.142  0.668+0.299
O.Forest 8.094+4.669 4.148+2.224" 2.605+£2.418" 3.136+5.642 0.744+0.013  0.699+0.022* 0.664+0.157  0.702+0.325
PSM 5.228+0.154* 5.094+0.301* 3.219+4.352" 4.634+8.574 0.884+0.010  0.745+0.021 0.740+£0.149  0.681+0.253
BNN 3.345+0.233" 3.368+0.176" 0.709+0.330  1.806+2.837 0.88240.033  0.645+0.013* 0.654+0.184 0.711+0.329
CFR-MMD  3.18240.174% 3.35740.321" 0.777£0.327  1.791£2.741 0.871+0.032  0.659+0.017* 0.655+0.183  0.710+0.329
CFR-WASS  3.128+0.263* 3.207+0.169* 0.657+£0.673  1.704£3.115 0.873+0.029 0.669+0.018* 0.656+0.187 0.715+0.311
ESCFR 2.252+0.297 2.316+0.613 0.502+0.252  1.282+2.312 0.796+0.030  0.754+0.021 0.665+0.166  0.719+0.311
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Ablation & sensitivity studies

In-sample Out-sample
SOT RMPR PFOR PEHE AUUC PEHE AUUC
3.2367+0.2666* 0.8862+0.0462 3.2542+0.1505* 0.6624+0.0149*
v 3.1284+0.2638* 0.8734+0.0291 3.207340.1699* 0.6698+0.0187*
v v 2.6459+0.2747* 0.8356+0.0286 2.7688+0.4009 0.7099+0.0157*
v v 2.5705+0.3403* 0.8270+0.0341 2.6330+0.4672 0.7110+0.0287*
v v v 2.2520+0.2975 0.7968+0.0307 2.3165+0.6136 0.7542+0.0202
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Thanks for your listening

Speaker: Hao Wang
Contact: haohaow@zju.edu.cn
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