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Diffusion Models

SDXL : Stable Diffusion XL [1]

B Recently, Diffusion models have gained popularity due to its remarkable performance.

POSTERPCH [1] Podell, Dustin, et al. "SdxI: Improving latent diffusion models for high-resolution image synthesis." 2/37



Mechanism of Diffusion Model

B Diffusion model is denoising model. It removes small amount of noise from noisy image.
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Mechanism of Diffusion Model

B Diffusion model is denoising model. It removes small amount of noise from noisy image.
- By iteratively denoising from pure noise, we can generate new image.

B Problem : Diffusion model is too slow because it requires hundreds of denoising steps for generation.

POSTERPCH 5/37



Quantization
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= Quantization is one of the most widely adopted optimization techniques.
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Quantization
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= Quantization is one of the most widely adopted optimization techniques.

e Activations and weights are stored in a low-precision domain.
 Reduce memory usage & enable acceleration.

POSTECH 7137



Diffusion Models are Hard to Quantize

conv_in.0

up.l.upsample.conv.0

m However, applying quantization to diffusion models is known to be very challenging.
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Diffusion Models are Hard to Quantize
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m However, applying quantization to diffusion models is known to be very challenging.
- We discovered that this is due to unique property of diffusion model’s denoising process.
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Diffusion Models are Hard to Quantize
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m However, applying quantization to diffusion models is known to be very challenging.
- We discovered that this is due to unique property of diffusion model’s denoising process.

B Activation distribution of each layer varies significantly depending on the time step.

POSTEPLCH 10/37



Error Source of Quantization
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B There are two types of error source in quantization.
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Error Source of Quantization
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B There are two types of error source in quantization.
- Rounding Error : Values within quantization range are mapped to the nearest quantization bin.

rPOSTECH 12/37



Error Source of Quantization

>

A — Quantization Interval
<>

Frequency

—

>

a value

B There are two types of error source in quantization.
—  Truncation Error : Values greater than the last quantization bin are truncated to it.
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Error Source of Quantization
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B There are two types of error source in quantization.

- Rounding Error : Values within quantization range are mapped to the nearest quantization bin.
—  Truncation Error : Values greater than the last quantization bin are truncated to it.

B There is trade-off between these two error sources.

POSTRPCH 14137



Diffusion Models are Hard to Quantize

conv_in.0

B [n this case, static quantizer cannot handle Quantization Error Trade-off effectively.
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Diffusion Models are Hard to Quantize

activation distribution
T=0 T=100

—

Truncation error is too high

(a) The interval is calibrated at T=0

B [n this case, static quantizer cannot handle Quantization Error Trade-off effectively.
= Calibrating Quantizer to T=0 — Large Truncation error when T=100
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Diffusion Models are Hard to Quantize

activation distribution
T=0 T=100

Rounding error is too high

(b) The interval is calibrated at T=100

B [n this case, static quantizer cannot handle Quantization Error Trade off effectively.
= Calibrating Quantizer to T=100 — Large Rounding error when T=0

POSTECH 17137



Dynamic Quantization

m Solution : Dynamic Quantization ?

Dynamic Module
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B One easy solution is using Input-dependent dynamic quantization.
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Dynamic Quantization
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B One easy solution is using Input-dependent dynamic quantization.
= It generates quantization interval based on input statistics, such as min,max,var.
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Dynamic Quantization

m Solution : Dynamic Quantization ?

Dynamic Module
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B One easy solution is using Input-dependent dynamic quantization.
= It generates quantization interval based on input statistics, such as min,max,var.
= However, process of gathering these statistics introduces significant overhead in inference.

POSTEPLCH 20/37



Ours : Temporal Dynamic Quantization

m Our Solution :

Frequency Encoding TDQ Module
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B Instead, we propose our method : Temporal Dynamic Quantization

POSTEPLCH
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Ours : Temporal Dynamic Quantization

m Our Solution :

Frequency Encoding TDQ Module
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B Instead, we propose our method : Temporal Dynamic Quantization
B Unlike dynamic quantization, we only use temporal information rather than input activation statistics.
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Ours : Temporal Dynamic Quantization

m Our Solution :

Frequency Encoding TDQ Module
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B Instead, we propose our method : Temporal Dynamic Quantization
B Unlike dynamic quantization, we only use temporal information rather than input activation statistics.
-  Since we can pre-compute quantization interval, our method incurs no overhead.
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Implementation Details

TDQ

Time Step (t) MLP(RelLU)

B In standard setting, our TDQ module has 3 components : Frequency Encoding
= Frequency Encoding : We use Geometric Fourier Encoding to inject high frequency components.

: t t . t t . t t
I =enc(t) = (Szn(o/—d),cos(o/—d),sm(Z/—d),cos(Q/—d), ...,sm(d/—d),cos(d/—d)),
tmax tmax tmam tmaw tmaw tma(c
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Implementation Details
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B In standard setting, our TDQ module has 3 components : Frequency Encoding , MLP
- MLP : MLP is trained to predict optimal quantization interval for each time step.
* TDQ consists of 4 layer MLP with ReLU activation. (hidden dim 64)
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Implementation Details

TDQ

Time Step (t) MLP(RelLU)

B In standard setting, our TDQ module has 3 components : Frequency Encoding, MLP, Softplus
- SoftPlus : SoftPlus function constrains data ranges to non-negative value.

POSTEPLCH 26/37



Implementation Details

TDQ

Time Step (t) MLP(RelLU)

B In standard setting, our TDQ module has 3 components : Frequency Encoding, MLP, Softplus

B Every part of TDQ module is differentiable.
- TDQ module can be trained to minimize quantization error by using gradient descent.

rPOSTECH 21137



Implementation Details
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Time Step (t) MLP(ReLU)

B However, in PTQ, standard setting was prone to overfitting due to two reason.

1) Limited calibration dataset (typically 256 samples) makes it challenging to train standard TDQ.
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Implementation Details

™DQ

1
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Time Step (t) MLP(ReLU)

B However, in PTQ, standard setting was prone to overfitting due to two reason.

2) The relatively brief training iteration make it hard to filter out the high-frequency component.

POSTEPLCH 29/37



Implementation Details

I'DQ¢hin
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B However, in PTQ, standard setting was prone to overfitting due to two reason.

* To mitigate these constraints, we introduced a streamlined version of TDQ, referred to as TDQ ,i-
* This refined module uses a 3-layer MLP with a mere 16 hidden dimensions and omits the frequency

encoding for time steps.

POSTEPLCH
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Experimental Results

m Quantization Aware Training (QAT)

LSUN-Churches

(FID) WSAS | W4A8 | W8SA4 | W4A4 | W3A3
PACT[2] | 9.20 9.94 8.59 10.35 12.95
LSQ [3] - 4.92 5.08 5.06 7.21
Ours 3.87 4.04 4.86 4.64 6.57

Ours

B TDQ gives substantial quality improvement, and benefit becomes even larger in lower precision.

POSTEPLCH

[2] Choi, Jungwook, et al. "Pact: Parameterized clipping activation for quantized neural networks."

[3] Esser, Steven K., et al. "Learned step size quantization." 31/37



Experimental Results

m Post Training Quantization (PTQ)

(FID) WS8AS WS8AG WS8A5

Min-Max 4.34 103.15 269.05
PTQ4DM [4] 3.97 4.26 7.06
Ours 3.89 4.24 4.85

B TDQalso shows performance improvement in PTQ.

B Our method can be applicable to any quantization pipeline seamlessly.

POSTERCH [4] Shang, Yuzhang, et al. "Post-training quantization on diffusion models."
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Experimental Results

m Post Training Quantization (PTQ)

(FID) Churches W4A8 Churches W4AG6 ImageNet W4A6
Baseline [9] 76.36 158.07 47.26
TDQ 44 .48 120.53 41.23
TDQ:phin 28.74 55.27 16.96

B Even at low precision weights, TDQ shows performance improvement over baseline.
B Additionally, TD Qpi,, outperforms all these cases.

POSTERPCH [5] Li, Xiuyu, et al. "Q-diffusion: Quantizing diffusion models." 33/37



Generalization Performance
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B Sampling process is usually executed in fewer time step (10 ~ 50) than training (1000).

B TDQ’s performance declines similarly to the FP baseline, while LSQ’s performance deteriorates as the
number of sampling step decreases.

POSTRPCH 34/37



TDQ Output Dynamics
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B Blue : Predicted Quantization Interval , Red : Variance of Activation
B In most cases, TDQ's output dynamics show alignment with variation.

POSTEPLCH 35/37



TDQ Output Dynamics
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B Blue : Predicted Quantization Interval , Red : Variance of Activation

B Few layers show different tendency :
These indicate that TDQ module is attempting to minimize final task error, not layer quantization error.
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