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Diffusion Models

■ Recently, Diffusion models have gained popularity due to its remarkable performance.

SDXL : Stable Diffusion XL [1]

2/37[1] Podell, Dustin, et al. "Sdxl: Improving latent diffusion models for high-resolution image synthesis."



Mechanism of Diffusion Model

■ Diffusion model is denoising model. It removes small amount of noise from noisy image.
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Mechanism of Diffusion Model

■ Diffusion model is denoising model. It removes small amount of noise from noisy image.

■ Problem : Diffusion model is too slow because it requires hundreds of denoising steps for generation.

̶ By iteratively denoising from pure noise, we can generate new image.

5/37



Quantization

§ Quantization is one of the most widely adopted optimization techniques.

Quantization Deployment

Neural Network
(FP32)

Quantized Neural Network
(INT8) Various Hardwares
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• Activations and weights are stored in a low-precision domain.
• Reduce memory usage & enable acceleration.

§ Quantization is one of the most widely adopted optimization techniques.



Diffusion Models are Hard to Quantize

■ However, applying quantization to diffusion models is known to be very challenging.

8/37



Diffusion Models are Hard to Quantize

■ However, applying quantization to diffusion models is known to be very challenging.
̶ We discovered that this is due to unique property of diffusion model’s denoising process.

9/37



Diffusion Models are Hard to Quantize

■ However, applying quantization to diffusion models is known to be very challenging.
̶ We discovered that this is due to unique property of diffusion model’s denoising process.

■ Activation distribution of each layer varies significantly depending on the time step.
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Error Source of Quantization

Quantization Interval

■ There are two types of error source in quantization.
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̶ Rounding Error  :  Values within quantization range are mapped to the nearest quantization bin.
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̶ Truncation Error :  Values greater than the last quantization bin are truncated to it.



Error Source of Quantization

Quantization Interval

■ There are two types of error source in quantization.
̶ Rounding Error  :  Values within quantization range are mapped to the nearest quantization bin.
̶ Truncation Error :  Values greater than the last quantization bin are truncated to it.

■ There is trade-off between these two error sources.
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Diffusion Models are Hard to Quantize
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■ In this case, static quantizer cannot handle Quantization Error Trade-off effectively.



Diffusion Models are Hard to Quantize

■ In this case, static quantizer cannot handle Quantization Error Trade-off effectively.
̶ Calibrating Quantizer to T=0 → Large Truncation error when T=100
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Diffusion Models are Hard to Quantize

■ In this case, static quantizer cannot handle Quantization Error Trade off effectively.
̶ Calibrating Quantizer to T=100 → Large Rounding error when T=0
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Dynamic Quantization
■ Solution : Dynamic Quantization ?
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■ One easy solution is using Input-dependent dynamic quantization.
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■ One easy solution is using Input-dependent dynamic quantization.
̶ It generates quantization interval based on input statistics, such as min,max,var.



Dynamic Quantization
■ Solution : Dynamic Quantization ?

■ One easy solution is using Input-dependent dynamic quantization.
̶ It generates quantization interval based on input statistics, such as min,max,var.
̶ However, process of gathering these statistics introduces significant overhead in inference.
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Ours : Temporal Dynamic Quantization
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■ Instead, we propose our method : Temporal Dynamic Quantization

■ Our Solution :
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■ Instead, we propose our method : Temporal Dynamic Quantization
■ Unlike dynamic quantization, we only use temporal information rather than input activation statistics.

̶ Since we can pre-compute quantization interval, our method incurs no overhead.

■ Our Solution :



■ In standard setting, our TDQ module has 3 components : Frequency Encoding
̶ Frequency Encoding : We use Geometric Fourier Encoding to inject high frequency components.

MLP(ReLU)

SoftPlus

Time Step (t)

1
Frequency Encoding

I2

3

TDQ

Implementation Details
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TDQ

Implementation Details

■ In standard setting, our TDQ module has 3 components : Frequency Encoding , MLP
̶ MLP : MLP is trained to predict optimal quantization interval for each time step.

• TDQ consists of 4 layer MLP with ReLU activation. (hidden dim 64)

MLP(ReLU)

SoftPlus

Time Step (t)

1
Frequency Encoding

I2

3
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TDQ

Implementation Details
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■ In standard setting, our TDQ module has 3 components : Frequency Encoding, MLP, Softplus
̶ SoftPlus : SoftPlus function constrains data ranges to non-negative value.

SoftPlus

Time Step (t)
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TDQ

Implementation Details

■ In standard setting, our TDQ module has 3 components : Frequency Encoding, MLP, Softplus

■ Every part of TDQ module is differentiable.
̶ TDQ module can be trained to minimize quantization error by using gradient descent.
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TDQ

Implementation Details

■ However, in PTQ, standard setting was prone to overfitting due to two reason.

SoftPlus

Time Step (t)

1
Frequency Encoding

I2

3

1) Limited calibration dataset (typically 256 samples) makes it challenging to train standard TDQ.

MLP(ReLU)
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TDQ

Implementation Details
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■ However, in PTQ, standard setting was prone to overfitting due to two reason.

SoftPlus

Time Step (t)

1
Frequency Encoding

I2

3

2)  The relatively brief training iteration make it hard to filter out the high-frequency component.

MLP(ReLU)



𝑻𝑫𝑸𝒕𝒉𝒊𝒏

■ However, in PTQ, standard setting was prone to overfitting due to two reason.

SoftPlus

Time Step (t)

1
Frequency Encoding

I2

3

• To mitigate these constraints, we introduced a streamlined version of TDQ, referred to as 𝑻𝑫𝑸𝒕𝒉𝒊𝒏. 
• This refined module uses a 3-layer MLP with a mere 16 hidden dimensions and omits the frequency 

encoding for time steps. 

Implementation Details
Lightweight MLP

MLP(ReLU)
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Experimental Results
■ Quantization Aware Training (QAT)

(FID) W8A8 W4A8 W8A4 W4A4 W3A3

PACT [2] 9.20 9.94 8.59 10.35 12.95

LSQ [3] - 4.92 5.08 5.06 7.21

Ours 3.87 4.04 4.86 4.64 6.57

W4A4W4A8

Ours Ours

LSUN-Churches
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■ TDQ gives substantial quality improvement, and benefit becomes even larger in lower precision.

[3] Esser, Steven K., et al. "Learned step size quantization."
[2] Choi, Jungwook, et al. "Pact: Parameterized clipping activation for quantized neural networks."



Experimental Results
■ Post Training Quantization (PTQ)

(FID) W8A8 W8A6 W8A5

Min-Max 4.34 103.15 269.05

PTQ4DM [4] 3.97 4.26 7.06

Ours 3.89 4.24 4.85

■ TDQ also shows performance improvement in PTQ.
■ Our method can be applicable to any quantization pipeline seamlessly. 

LSQ[3]

Ours

32/37[4] Shang, Yuzhang, et al. "Post-training quantization on diffusion models."



Experimental Results
■ Post Training Quantization (PTQ)

(FID) Churches W4A8 Churches W4A6 ImageNet W4A6

Baseline [5] 76.36 158.07 47.26

TDQ 44.48 120.53 41.23

𝑻𝑫𝑸𝒕𝒉𝒊𝒏 28.74 55.27 16.96

■ Even at low precision weights, TDQ shows performance improvement over baseline.
■ Additionally, 𝑇𝐷𝑄%&'( outperforms all these cases.

33/37[5] Li, Xiuyu, et al. "Q-diffusion: Quantizing diffusion models."



Generalization Performance

■ Sampling process is usually executed in fewer time step (10 ~ 50) than training (1000).

■ TDQ’s performance declines similarly to the FP baseline, while LSQ’s performance deteriorates as the 
number of sampling step decreases.
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TDQ Output Dynamics
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■ Blue : Predicted Quantization Interval , Red : Variance of Activation
■ In most cases, TDQ’s output dynamics show alignment with variation.



TDQ Output Dynamics
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■ Blue : Predicted Quantization Interval , Red : Variance of Activation
■ Few layers show different tendency : 

These indicate that TDQ module is attempting to minimize final task error, not layer quantization error.
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