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Decentralized Distributed Learning

Decentralized (serverless) distributed learning is a class of distributed learning that trains

models in parallel across multiple workers over a decentralized communication network.
Each worker node only communicates with its neighbors.
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Second-Order Optimality

® Escaping saddle point and finding local minima are core problems in conventional
nonconvex optimization.

® Saddle point is a kind of first-order stationary point that can be reached by many
gradient-based optimizers while it is not expected.

local min local max saddle point
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PDGT

Algorithm 1: PDGT algorithm Algorithm 2: PDGT algorithm: Phase I
) 0 0 1: Input: X, y,m1,T1,61
1: Input: x°, V f(x°),¢€,7,p, 01,02 3 - o e 2: Tnitialization: x° = x, y° =y;
2 Setx; =x°, yi = V), Ti=6(Htrm), To=06(dalyra), % forr=1,... T,do
- . . 42 " 3 ~ 5 4:  Compute x| = ZjEM wi]x;’l - 711}’:71; Vi=1,...,m
m =®((1_U) )-, 772=®(d(1—a))v R:@(’y2) ) Bz@(’Y ); 5. Compute y{:Z]EM w,jy;-"l+Vf,(x§)—Vf,(x;"1); Vi=1,...,m
3: Call (x)=PDGT Phase I (K,X, n1,11,01); 6:  Exchange x] and y! with neighboring nodes; Vi=1,...,m
4: Call (X,¥,S5)=PDGT Phase II (X, 72,15, R, B); 7: end for
5. ifS = 1 then 8: forj:l:log(%)do
6:  Return X as a second-order stationary point and stop; 9:  Choose index t; ~ [0, T}] uniformly at random and run Consensus Protocol on ; to find first
7: else order stationary point X with small gradient tracking disagreement;
8: Setx=Z%,y = and go to Step 3; 10: end for . o .
9: end if . Result: Returns first order stationary point X with probability at least 1 — &;
Algorithm 3: PDGT algorithm: Phase II
1: Input: X, 12,75, R, B
2: All nodes sample a vector & ~ uniform ball of radius R using the same seed; . . .
3: Setx? = X; + £ and run Average Consensus on V f;(x?) to sety? = L i V£i(x2); * Perturbed Decentralized Gradient TraCklng (PDGT)
4 forr=1,...,Ts do ) . = consists of two phases. It runs the descent phase and
5. Compute x{:Z]EM w,,jx;’ -y Vi=1,...,m . .
6 Compuie y] = X x woyl ™+ VAG) — VA Vi1, m escaping phase alterpatlvely.. . .
7. Exchange x] and y7 with neighboring nodes; Vi=1,...,m * The descent phase aims to find a first-order stationary
8: end for . . . . .
9: Run Average Consensus Protocol for iterates x™2 and &; pOInt USIng decentrallzed gradlent traCklng-
. i T vT2) _ I(R.9) > — . . . .
10: M H(x ™,y ) -~ H&Y) > ~B then o + After drawing perturbations, the escaping phase is used
11:  Return approximate second-order stationary point X = [X1,...,X,,] and set S = 1; . .. . . . A ..
12: else to discriminate if the candidate point is a local minimum.
13:  Return x™2 = [XTZ., LoxE] oy = [lez, ..., ¥ 2] and set S = 0;
14: end if
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Restrictions of PDGT

® Deterministic gradient oracle. ) Stochastic ?

® Fix number of iterations in the descent phase.  m—_S ) Adaptive ?

O Stuck at saddle point for a long time.

O Hard to be extended to stochastic gradient oracle.

® Consensus protocol over the entire network. ) [ndependent ?

O Computex and H(x) periodically.
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Contributions

® We propose a novel PErturbed DEcentralized STorm ALgorithm (PEDESTAL), which is
the first decentralized stochastic gradient-based algorithm to achieve second-order
optimality with theoretical guarantees.

® We provide a new analysis framework to support changing phases on each worker node
adaptively and independently.

® We prove that our method achieves (¢, €y) second-order stationary point with the
complexity of 0(e™3), which matches the best results of decentralized algorithms to
find first-order optimality or centralized algorithms to find second-order optimality.
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PEDESTAL

Algorithm 1 Perturbed Decentralized STORM Algorithm (PEDESTAL)

Input: initial value 2§ = z¢, v} = 0, y) = 0, esc® = —1.
Parameter: by, b1, n, 3, 7, Cy, Cq, Cr.
1: On i-th node:

2 fortm 01 . T 1do o We adopt variance reduced gradient estimator.

3 ift=0then R o Parameter esc® represents the status on node
a0 Sompute vy = VEi(ao, &) with 57| = bo. i. Itis -1 when the node is in the descent phase.
6: go;npute o) = VF @, e7) + (1 - B0, — VEi(a",, &) with [¢7] = by. Otherwise, it is the number of iterations that has
7:  end1r ) ) . i i

8:  Communicate and update the gradient tracker: ") = > wi; (g9 + 0P — o). been updated in th_e escaplng. phase.
9 ifesc® = —1and [[y”]| < C, then o Each pode can S.WItCh phase mdgpendently. .The
10:  Draw a perturbation & ~ By (r) and update 2 = z{" + ¢. escaping phase is started according to real-time
1: Savez!” as 7 and set esc) = 0, local gradient tracker. The escaping phase is
12:  else ) ) . : :
13 Update 27 = 20 — ny(®. broken if th_e moving distance of the model
14:  endif 0 . ) parameter is larger than a threshold Cj;.
12 ‘ g"m‘g‘;r‘:ztilfnd update the model parameter: &,y = 3 j—; Wi - o The algorithm is terminated if at least 1/10 of

: if esc'”’ > en ) . P
17: Reset esc) = —1if ||z§,2+)1 — 3| > ¢y else update esc? = escl) 4 1. total nodes SatISfy esc(l) = CT'
18:  end if
19: end for

Return: Z;_, if there are at least ; nodes satisfying escd > Cp.
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Theorems

Let ey = €“. When a < 0.5, we have the following Theorem 1.

Theorem 1. Assume oo < 0.5 and Assumption 1 to 5 are satisfied. Let 6 = min{3=2%,1}. We set
n=0(£), 8= 06(1?), by = O(e72), by = O(max{e2~=5 1}), r = O(!+Y), C, = O(e),
Cr = O(e ) and Cy = ©(e'~*). Then our PEDESTAL algorithm will achieve O (e, € i )-second-
order stationary point with (5(6_3) gradient complexity.

The specific constants hidden in ©(-) will be shown in Appendix B, where the proof outline and the
completed proof of Theorem 1 can also be found. From Theorem 1 we can see our PEDESTAL-S

with by = (21) can achieve O (e, €7 )-second-order stationary point with O (e ~3) gradient complexity
forey > %2, In the classic setting, our PEDESTAL achieves second-order stationary point with

O(e~3) gradient complexity. When o > 0.5, i.e., ey < /€, we have the following Theorem 2.

Since the parameter settings are different and the O(1) batchsize is only available in Theorem 1, we
separate these two theorems. The proof of Theorem 2 can be found in Appendix D.
Theorem 2. When ey < /e (e, a > 0.5), we set n = O(e?), B = O(e?), by = O(e71),
by = O(e maxi{ta—1- ”+a}), r = 0(et?), ¢, = O(e), Cr = O(¢ =) and Cy = O(*)
where § = min{2%-1 3o — 2}, Under Assumpnon 1 to 5, our PEDESTAL algorithm will achieve
Ofe, e H)—second-order stationary point with O (ee® + ¢*e ;') gradient complexity.
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Experiments
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Figure 1: Experimental results of the decentralized matrix sensing task on different network topology Figure 2: Experimental results of the decentralized matrix factorization task on different network

(e) toroidal, Dirichlet
for d = 50 and d = 100. Data is assigned to worker nodes by random distribution. The y-axis is the topology on MovieLens-100k. The y-axis is the loss function value and the x-axis is the number of
loss function value and the x-axis is the number of gradient oracles divided by the number of data N. gradient oracles divided by the size of matrix N x I.

(f) exponential, Dirichlet
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Thank You!
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