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Introduction: Counterfactual identification in Markovian SCMs

e Counterfactual inference is widely used in data-driven decision-making: it aims to answer
Why this is retrospective “what if’ questions

important? e Counterfactual identifiability is only possible with unnatural or unrealistic assumptions (e.g.
monotonicity of the functions in the Markovian structural causal models (SCMs))

Given observational dataset from PM(Y,A). ;’(};1‘, M= (U, V,P(U), F)
induced by some bivariate SCM M with 4 =-" U ={Us € {0,1},Uy € [0,1]%}

(A) = V={4e{0,1},Y eR}
(4) treatments l ‘ryy  P(U): Ua ~ Bern(pa), 0 <pa <1,
v) (factual) outcomes = Uy ~ Unif(0,1)?
Problem Y F = {fa(Ua) = Ua, fr(A,Uy)}

formulation

we want to perform a partial identification of an expected counterfactual outcome of
[un]treated ECOU [ECOT]

Qé\’/l—m(y,) = EM (Ya | ala y,)
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Introduction: Task complexity — Related work

e Counterfactual queries in general are not identifiable from both L1 and L2 data even for
Markovian SCMs

e Partial identification of L3 discrete outcomes / L2 continuous outcomes does not
generalize -> we need brand new mathematical tools for L3 partial identification with
continuous outcomes

Why this is Causal diagrams G(M) % Ladder of causation

—~ —~

hard? » N[B[0 9)) (B (Y. | o)) [EM (Ve [ )]

1 1
U A l U A ) expected counterfactual expected counterfactual/ expected potential

. outcome of [un]treated outcome outcome of [un]treated L 3 Counterfactual

d-separation in parallel
E M Y worlds network
'U ) 'U ) | (Ya)
Y Y ; Markovianit
X expected Yy .
, e , s N \ ssotiiial ctlsoiie Lo Interventional

(EMY 1a) ]

conditional

expectation L 1 Observational

Bayesian network ' Causal Bayesian network Parallel worlds network
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Introduction: Task complexity — Related work
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Markovian SCMs
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Why this is Causal diagrams G(M) % Ladder of causation
hard? P : o ! [ EL-][]EMY o) ][ My,
UA | UA I

a') ]
expe: ounterfa al expected counterfactual/ expected potential
1 1
UY ) U Y ) ¥
/ - / - \
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Introduction: Task complexity — Related work

e Counterfactual queries in general are not identifiable from both L1 and L2 data even for

Markovian SCMs

e Partial identification of L3 discrete outcomes / L2 continuous outcomes does not
generalize -> we need brand new mathematical tools for L3 partial identification with

continuous outcomes

Why this is Causal diagrams G(M) N Ladder of causation
?
hard? . o O\ BN &) (M| )| EM (Y | )
o UA ) f UA ] expected counterfactual expected counterfactual expected potential
N . , < outcome of [un]treated outcome /\ outcome of [un]treated . [:3 Counterfactual
M d-separation in parallel
worlds network
: UY ) - (Ya) Markovianity
, e Rl s \( L+ Interventional

Bayesian network ' Causal Bayesian network

[ EM(Y
conditional
expectation

a) |

L1 Observational

Parallel worlds network
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Introduction: Task complexity — Related work

Symbolic oy ' ’ Partial identification methods
Lager | MM identifiability ‘ Lomkicanieagonmehods ’ Discrete outcomes | Continuous outcomes

E

= No-assumptions bound [83]; MSM

“t’ [13, 33, 37, 56, 57, 38, 84, 92,

o) 120]; outcome sensitivity models

g [13, 100]; confounding functions [9,

{f 15, 103]; noisy proxy variables [45];
1V [44, 51, 64, 139]; ATD [3]; clus-
tered DAGs [93]

Related WOI’k D ti dels [19, 27, 66 CSM (thi )
eep generative models [19, 27, 66, is paper

B | 94, 107, 108, 111, 112] ; Markovian | oo 5 PR0 B 76 75

q§ Parallel worlds net- | BGMs [55, 62, 88, 89, 117, 142] ; i ’ P ’ pk y

3 works [2, 115], coun- | transport-based counterfactuals [30] R ond

5 — , terfactual unnesting ical, parhuoning I JLs

é theatem|[25] ETT [113] ; path-specific effects [116, | 106, 131, 135, 136, 137, | Future work (see discussion in Ap-

- SM 140] ; deep generative models [29, | 141]; causal marginal | pendix E); ANMs with hidden con-

Q 80, 128, 129, 134] ; semi-Markovian | problem [42, 109]; deep | founding [65]

BGMs [88] twin networks [123]
Legend:

e M/SM: Markovian SCM (M), semi-Markovian SCM (SM)
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- Motivating example

Bivariate Markovian SCMs with contlnuously -differentiable functions and
high-dimensional latent noise: B(C*,d) ,k >=0,d >0

—~

| Ch M = (U, V,B(U), F)
Assumptions RS U = {Us € {0,1},Uy € [0,1]%}
V = {4 € {0,1},Y € R} +  fy(a,-) € C*
(Uy\) P(U): Us ~ Bern(pa), 0 < pa < 1,
PRial Uy ~ Unif(0,1)¢
Y

F = {fa(Ua) = Ua, fr(A,Uy)}

e ECOU [ECOT] is non-identifiable in B(C*, d)
L1 Observational inference = L3 Interventional inference L3 Counterfactual inference
1. Abduction 2. Action 3. Prediction
A=0; do(a=0) A=1; do(a=1) ?((-/y1‘0y2“4/70vyl70) do(a=1)
. . i 777 (PMiy,_ =y 4 =0Y'=0)]
Motlvatlng fy(0,Uy1,Uy2) i /////?' fy(1,Uy1,Uy2) | (0) — 1
= A, : 1
example My o N § o O N Nt O_*
2 (PMy =y a=0) =My, =y)) . 7, (M =y 4=1)=PME¥,_, =) N | ‘H [ ‘
‘ H I ///// . /ﬁmmmm ‘[ (Va1 =ylal=0Y=0)
| ‘, 2 ’ i ~ 1.114
Ha e | R — o SEENIT Q0—>1 '
- fy(0.Uy1,Uy2) A x fy(1,Uy1,Uy2) N
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Introduction: Research gap — Our contributions

e \We are the first to propose a sensitivity

Research model for partial counterfactual
gap identification of continuous outcomes in ¢
Markovian SCMs

Counterfactual query with continuous outcome

L3 symbolic
identifiability?

Yes
e We prove that the expected counterfactual *
outcome of [un]treated has Point identification with
. . : I probabilistic
non'lnformatlve bounds 1 %(C ,d) expression.sl(e_g_, ETT, Y
e We propose the first sensitivity model, path-specific effects) | YeS
namely, Curvature Sensitivity Model ¢
ini i Point identification with e : .
Our . . (CSM)’ to obtain informative boundg.. functional class restrictions Pa(r(‘)tluarl ggxgﬁ&art(leon
contributions ® We introduce a novel deep generative (e.g., BGMs, transport-based Sensitivity Model)
model called Augmented counterfactuals) 4

Pseudo-Invertible Decoder (APID) to
perform partial counterfactual inference
under our CSM
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Partial Counterfactual Identification: Formulation

e Given the observational distributions, P(Y | a) , we want to solve a constrained
variational problem, which involves partial derivatives and Hausdorff integrals:

Qa—a(y') = M@i;;gk,d) Qe (W) st Vae{0,1}:P(Y |a) =P"(Y | a)
Quor—a(y') = sup  Q _m( Y st Vae{0,1}:P(Y |a) = ]P’M(Y | a)
MeB(CF,d)

Partial counterfactual
identification of
ECOU [ECOT]
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Partial Counterfactual Identification: Formulation

e Given the observational distributions, P(Y | a) , we want to solve a constrained
variational problem, which involves partial derivatives and Hausdorff integrals:

Qoa(y) = Megg‘)k d) Qu’ —>a( ) st Vae€{0,1}:P(Y |a)=

Qa’—)a (y/> — Sup Qa —)a( )

MEB(Ck,d)

PM(Y | a)

MY | a)

shforward distribution:

1
a /l‘?(y,a) ”vuy fY(a‘7 uY)”Q

Partial counterfactual ® OPservational dis

identification of
ECOU [ECOT]

PM(Y =y | a) dH (uy)
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Partial Counterfactual Identification: Formulation

e Given the observational distributions, P(Y | a) , we want to solve a constrained
variational problem, which involves partial derivatives and Hausdorff integrals:

Quoaly) = | inf Q%) st Va€{0,1}:P(Y |a) =PM(Y | a)
Qo —a(y') = QM. (v)| st Vae{0,1} :P(Y |a) =PM(Y | a)
MeB

e Observational distribution is a pushforward distribution:
/ 1
E(y,a) ”vuYfY(a? uY)”Q

e Counterfactdal queries are expectations of pushforward distributions:

Partial counterfactual
identification of
ECOU [ECOT]

de_l (’LLy) ‘

1 6(fy(a,uy) —y) _
PM(Y, a,y') = / ’ dH4 Y (u
( v]e.y) PMY =y | a') Jew o) [Vuy Fr(a’,uy)ll, ()
1 fY(aauY) —
y—)a ' :EM Y ,a ") = / de 1
B U S T A | e e ) R

1"
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Partial Counterfactual Identification: Non-Informative Bounds

e Partial counterfactual identification of ECOU [ECOT] has two solutions in class
B(CL,1)(d=1,k=1), when fy(a,-) is strictly monotonous:

QL. () =F, ' (£F. (y') ¥0.5+ 0.5)

where B! is an inverse CDF of the observational distribution, P(Y | a)

Solution ford =1

e This class is known as bijective generative mechanisms’ (BGMs)

1.0

0.8 - N
e Theorem 1 (informal). The ignorance . - PM(Y =y a)

. . 0.6 1.0
Non-informative interval for the partial identification of the = m @ /—\ﬂm}\
bounds | ' N

ECOU [ECOT] has non-informative
bounds for SCMs in B(C¥,d) for every

0.0 : : ! v
k> 1 0.00 025 050 0.75 100
Uy
fY(a7 Uy]_aUy2)

Arash Nasr-Esfahany, Mohammad Alizadeh, and Devavrat Shah. “Counterfactual identifiability of bijective causal models”. In: International Conference on Machine Learning. 2023.

o L]
0.2 1 - 0.0
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CSM: Assumption Kappa - Informative bounds

Curvature sensitivity
model (CSM)

Assumption K

Partial
identification
with informative
bounds

A s, v -y =5~ - e "‘j}
T

(Informal) we assume that k = 0 is the upper
bound of the absolute curvature for the level
sets:

_ 1 Vuy.fY(a”uY)
k1(uy) = —5Vuy (||Vuny(av“Y)”2)

T
0.8 1.0

Theorem 2 (informal). Under Assumption K, the ignorance interval for the partial
identification of the ECOU [ECOT] has informative bounds for SCMs in8(C*, d)
fork=2andd > 1

When K = 0, we do not obtain a point identification, but a BGMs-EQTDs
identification gap
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CSM: Identification spectrum

Partial identification
Point identification

I
i
Non-informative : Informative :
1 1
¥ i
7 : . S) e
(" . ) S
s ' i * Example 6 S
* M inf (Theorem 1) =7~ 'k Mecurv (Example 6) =
I ' el
B(C®,d) : Tf ﬁ % Mperp (Example 8) : * Mg, (Example 7) 2 1
k ’ :(l Em E/ - ! —J 8 .
P : = =  BGMsEQTDs - E =
. . . ' N 0 identification gap : 2 X
L] n n ! @) (@) =
2 - <" = (Lemma 3) ): 2 3
L%(Cz,d) ~ CSM (k = o0) | | p o 'j:
! ' -.q-)‘
\%(Cl’ d) (Lemma 1, Lemma 2) ' * My, (Example 2) 'BGMs % My, (Example 5) -g
' : 3
K%(C()’ d) . % My o (Example 1) : y =
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Augmented Pseudo Invertible Decoder: Novel deep generative model

Yaug” N(g4(Y),e?) s 3

Y ( - |
A - -E' Pl i

. S

- EWY )~ P(¥]4) @ - L E
P K
Y ...... I S— ENLL

Legend

P Connections Losses el ot s
......... e (D it o

—2 R ! Yz:nNUnif(0,1)]§§ T

- gt distributions
. +£ Noise regularization
[\| _F . NormaI|2|.ng(;‘I<t3)w, 9 _ _ A Fully-connected
1 ¥ parametrized by ——  Gradient blocking g ol




Augmented Pseudo Invertible Decoder: Training

. (2) Wasserstein

2" g N
{Uy11~ Unif(0,1)
£ J
. Y2 l ~ Unif(0, 1)
Uyl ) ~ Unif(0,1)
U i $ . |
<> Connections .. L Losses
NF Normalizing flow, +£ Noise regularization
v pasiahizadicy & QA Fully-connected network

Inputs / outputs with
corresponding distributions

Gradient blocking

I
I

(4) Curvature loss

"o e e e e e e e e e e e e e e e e M e e e e e e e e e e e e e e e e e e e e e e e e e e

(3) Counterfactual query loss

o s e s e e e s o

y,
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Residual NF

s A Y
(u Y 1,'_

s A Y
(u Y I,K—
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Experiments: Datasets — Results

e \We evaluate APID based on 2 synthetic dataset and 1 real-world COVID-19 pandemic data
{Y |0~P(Y |0)=N(0,1)
Y| 1~P(Y|1) =N(01)
Datasets {Y | 0 ~ P(Y | 0) = Mixture(0.7 N(—0.5,1.5%) + 0.3 N(1.5,0.52)),
Y |1~P(Y |1) = Mixture(0.3 N(—2.5,0.35%) + 0.4 N(0.5,0.75%) + 0.3 N (2.0, 0.52))

e Even for synthetic data, we the GT counterfactual queries are intractable

e APID is consistent with the BGMs-EQTDs identification gap

P(Y |0)=P(Y | 1) = N(0,1) P(Y | 0) = Mixtureo(Y)  P(Y | 1) = Mixture; (Y)
4 4
| APID()\. = 0.
Results A 1 (A = 0.0)
2 \ \ Ly s , R — APID(\, = 0.5)
s +§ = < Y \ / APID(), = 1.0)
i . 3 0 —— APID(\, = 5.0)
< / < AL
,_,'_,_.—..—:-’»»gt/** \ \4.\ ™ / ---- BGMs
) —,/}+/ \t\“\ o] / — / & ........ EQTDs
¥ ] T <A ‘¥§+ s
= | | ) | | | | | . — [l1, 1]
-20 -15 -10 -05 00 05 10 15 20 20 -15 -10 -05 00 05 10 15 20
Y y
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Conclusion

Our work is the first to present a
sensitivity model for partial
counterfactual identification of
continuous outcomes in Markovian
SCMs

Our work rests on the assumption of
the bounded curvature of the level
sets, yet which should be sufficiently
broad and realistic to cover many
models from physics and medicine

Source Code:
github.com/Valentyn1997/

CSM-APID

ArXiv Paper:

arxiv.org/abs/2306.01424
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