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Neural Distribution Alignment

Problem to Solve:

« Perform alignment against the drastic distribution shift between raw neural
population activities recorded across-day and inter-subject (individual).

« Task Setting Example « Neural Latent Dynamics of Single Trials
Unaligned Target Domain
. o \ Source Domain Decoding R?: -34.12
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Neural Distribution Alignment

Problem Formulation:

Distribution Alignment in low-dimensional latent space

Based on the Manifold hypothesis [1]: a relatively small number of latent dynamical
factors contain a large portion of neural activities variability

Perform alignment in the neural latent space

e Georgia
[1] Gallego, Juan A., et al. "Neural manifolds for the control of movement." Neuron 94.5 (2017): 978-984

= " Tech



Neural Distribution Alignment
Problem Formulation:

Source-Domain

«  We denote the source-domain single-trial neural population activities as X =
1T
xf), . x(s) € R where [ is the trial length and n is the number of neurons. Z®) =

T
zf), . zl(s) e RX4 are their low-dimensional latent dynamics inferred by a latent
variable model (LVM), where d is the latent dimension size.

© G = argmax [E oy, [0gp (X 1 29:9)] - Dia (a(2 1X5 9) 119(29) )

« We denote the probabilistic encoder and decoder of the LVM trained on source-
domain as q(Z®) | X®); ¢,) and p(X©) | 2, y,), respectively.
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Neural Distribution Alignment

Problem Formulation:

Target-Domain

Given the target-domain single-trial neural population activities as X® =

A
xY ., xP| e R, we perform distribution alignment by probing the probabilistic
z

encoder q(Z® | X®); ¢)

The alignment is conducted by minimizing certain probability divergence D(:|-)
between the two posterior distributions:

minD (q(2) 1X9; ) 19(29 1 X0 )
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Neural Distribution Alignment

Challenges:

The underlying spatio-temporal structures of neural latent dynamics are both non-
linear and complex.

Prior works ignoring such crucial spatio-temporal structure information,
resulting in comparably inferior alignment performance.

Source JSDM Aligned
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Methodology of ERDiff



Neural Distribution Alignment

Key Insight:

« Extraction and Recovery of Spatio-Temporal Structure in Latent Dynamics Alignment
with Diffusion Model (ERDiff)

« How to precisely extract the spatio-temporal structures of the source domain neural
latent dynamics?

Strong Density Estimation Capability

« How to precisely recover such extracted spatio-temporal structures to the aligned
target domain neural latent dynamics?

Proper Alignment Algorithm
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Neural Distribution Alignment

Key Insight:

« How to precisely extract the spatio-temporal structures of the source domain neural
latent dynamics?

Strong Density Estimation Capability

(Score-based) Diffusion Model

« How to precisely recover such extracted spatio-temporal structures to the aligned
target domain neural latent dynamics?

Proper Alignment Algorithm
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Methodology of ERDiff

Source-domain Diffusion Model (DM) Training:

« The LVM alone focuses on the point-to-point underlying mapping between X and
Z8), The overall distribution of the source domain latent dynamics ps(Z),
abbreviation for q(Z® | X®); ¢), is still inaccessible by building a LVM alone

« We propose to learn p,(Z) via a Diffusion Model (DM) by taking the entire trials of
latent dynamics on source-domain Z) ~ g(:| X®); ¢5) as input to the DM for training

- Specifically, the DM fits pg(Z) through training of denoiser €(Z, t; 8,): (R>4xR) - R!*4
through the denoising score matching (DSM) loss:

2
T arggninIEtNu[O,T]IEZ(()S)Nq(.lx(s);¢s)}6~N(0}led) [W(t)z ||e — € (ng), t; 0)"2]

- where Z, = u,Z, + K€, and €(Z,,t;0) = —K;"s(Z,,t;0), K.KF = %,

'@ L, e Georgia
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[1] Pascal Vincent. A connection between score matching and denoising autoencoders.



Methodology of ERDiff

Extract the spatio-temporal structures of the source domain:

We use Spatio-Temporal Transformer Blocks (STBlocks)

Each STBlock is composed of Spatio-Transformer layers followed by Temporal -
Transformer layers

Spatio-Transformer layer takes latent states of each time bin as inputs to extract
spatial structure

Temporal-Transformer layer takes the entire latent trajectory of each latent space
dimension as inputs to extract temporal structure
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Neural Distribution Alignment

Key Insight:

« How to precisely extract the spatio-temporal structures of the source domain neural
latent dynamics?

Strong Density Estimation Capability

« How to precisely recover such extracted spatio-temporal structures to the aligned
target domain neural latent dynamics?

Proper Alignment Algorithm

Maximum Likelihood Alignment with Diffusion Model
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Methodology of ERDiff

Maximum Likelihood Alignment with Diffusion Model:

 Given the target-domain neural activities X(®, we propose to perform distribution
alignment via maximum likelihood estimation (MLE):

arg(rglaxIEXNp(X(t))[log ps(q(Z | X; ¢))] = al‘gglaXIEZNq(mx(t);(p) llog ps(Z)]

We use the marginal distribution py(Z; 8;) learnt by the DM to approximate p.(Z), the
maximum likelihood estimation can thus be written as:

argmaxk, .z x®. [log po(Z; 6)]
b q(21XV;¢)

We note that the alignment is conducted by probing the parameter set ¢ of the
probabilistic encoder while keeping the DM p,(Z; 8;) fixed
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Methodology of ERDiff

Maximum Likelihood Alignment with Diffusion Model:

Consequently, we could obtain an upper bound of the maximum likelihood loss
function, as follows:

_Ez~q(z|x(t);¢) [log po(Z; 6,)] < pKL(pT (Z; 0,) | Tl.'(Z)l

Constant Term
2 : 2
+]Et~’U[0,T]IEZO~q(z|x(t);¢),e~]v“(o,11xd) [E/(t) lle — E(Zt; t; Bs) "3 - gvz ) f:(zt; tz]
Denoising Score Matching Divergence

The divergence objective can be approximated using the Hutchinson-Skilling trace
estimator [1], making the whole optimization objective computationally tractable.

We note that the recovery of spatio-temporal structure is primarily conducted by the
denoising score matching part.

¢ 5. Georgia

[1] J. Skilling, “The eigenvalues of mega-dimensional matrices,” =L Tech



ERDiff Spatio-Temporal Structure Recovery

Recovery
Source-Domain Target-Domain
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Experiment

Synthetic Datasets - Results
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Figure 3: Experimental Results on the synthetic dataset. (A) Performance comparison on trial-
average negative log-likelihood (NLL) and KL Divergence (KLD). | means the lower the better.
ERDiff achieves the second-lowest NLL and the lowest KLD. (B) True continuous Bernoulli dynamics
in the source domain compared to the latent dynamics aligned by ERDiff and JSDM in the target
domain (blue dots denote the fixed points). ERDiff preserves the spatio-temporal structure of latent

dynamics much better.

Cr

Georgia
Tech.



Experiment

Neural Datasets - Setup

We conduct experiments with datasets collected from the primary motor cortex (M1)
of non-human primates

The primates have been trained to reach one of eight targets at different angles

We perform cross-day (recordings of the same primate performing the task on
different days) and inter-subject (recordings of different primates) experiments.
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Neural Datasets - Neural Manifold Analysis

' (C) ERDiff (Ours) JSDM
' Cross §%<
: Day
j — 0. 257 — 0.062 — —0.032
: Inter
: Subject /
Source : R? =0.234 = 0.049 — —0.048

Figure 4: Motor cortex dataset and Experimental Results. (A) Illustration of the center-out

reaching task of non-human primates. (B) The 3D Visualization of trial-averaged latent dynamics

corresponding to each reaching direction in the source domain. (C) The 3D Visualization of trial-

averaged latent dynamics corresponding to each reaching direction aligned by ERDiff, DAF, and

JSDM given the target distribution from cross-day and inter-subject settings. We observe that ERDiff Gr Georgia
preserves the spatio-temporal structure of latent dynamics well. Tech.



Neural Datasets - Behavior Decoding Performance

Table 1: The R-squared values (R2, in %) and RMSE of the methods on the motor cortex dataset.
ERDiff w/o S is short for a variant of our proposed method that removes the spatial transformer layer
in the DM. ERDiff w/o T is short for a variant of our proposed method that removes the temporal
transformer layer in the DM. The boldface denotes the highest score. Each experiment condition is
repeated with 5 runs, and their mean and standard deviation are listed.

Cross-Day Inter-Subject

Method R%(%) 1 RMSE | R*(%) 1 RMSE |
Cycle-GAN  -24.83 (+3.91) 11.28 (£0.44) -25.47 (+3.87) 12.23 (40.46)
JSDM -17.36 (£2.57)  9.01 (£0.38)  -19.59 (£2.77) 11.55 (£0.52)
SASA -12.66 (+2.40) 8.36 (+£0.32) -14.33 (£3.05) 10.62 (£0.40)
DANN -12.57 (+£3.28)  8.28 (+0.32) -18.37 (+3.24) 10.66 (+0.57)
RDA-MMD -9.96 (+£2.63)  8.51(£0.31) -6.31(42.19) 10.29 (+0.42)
DAF -6.37 (£3.72)  8.17 (£0.48) -11.26 (£3.64) 9.57(+£0.58)
ERDiff w/o S  -12.69 (£2.64) 8.57 (£0.50) -14.60 (£2.88) 10.85 (+0.57)
ERDiff wo T  -14.61 (£2.33) 8.93 (£0.50) -17.10 (£3.23) 10.94 (£0.59)
ERDiff (Ours) 18.81(+2.24) 7.99(£0.43) 10.29(+2.86) 9.78(%£0.50)
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Computational Cost and Hyper-parameter Generalization

Table 2: Comparative analyses of computational cost between ERDiff and baseline methods during

alignment. ERDiff has a comparable computational cost and maintains the stability of alignment.

Method Cycle-GAN JSDM SASA RDA-MMD DAF | ERDiff

Add’l. Param 26K 0K 33K 65K 91K 28K
Add’l. Size 117KB OKB 187KB 314KB 367KB | 139KB
Align. Time 103ms 77ms  155ms 264ms 251ms | 183ms

Stability X v v X X v
(A) Effect of Latent Dimension Size (B) Effect of Noise Scale
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Figure 2: Generalizability and Robustness of ERDiff on alternative latent dimension sizes and noise
scales (with 5 different random seeds). ERDiff consistently outperforms the best baseline method.
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Thanks for listening!



