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• Discrete-time nonlinear dynamics: , where  
are state and control at time . 

• Our Goal: learn a provably stable policy . 
• Stability: a dynamical system converges to a nominal state 

whenever the starting state is in a “region of attraction (RoA)”.

xt+1 = f(xt, ut) xt, ut
t

ut = π(xt)

Learning Stable Policies

Nominal state: (x, ·x, θ, ·θ) = (0,0,π,0)



• Lyapunov Stability (discrete-time controlled dynamical systems): 
If policy  and Lyapunov function  satisfy the below 
conditions, then  is stable. 
 
 
 

• Goal: synthesize a Lyapunov function  and policy (controller) 
 over a region  such that conditions 1) and 2) hold on . 

• Sub-level set  is RoA. 

ut = π(xt) V(x)
x = 0

V(x)
u = π(x) R R

D = {x ∈ R ∣ V(x) ≤ β}

Lyapunov Stability (Conventional)

1) ,   
2) 

V(0) = 0 V(x) > 0 ∀x ≠ 0
V( f(xt, ut)) < V(xt) ∀x, ut = π(xt)

Lyapunov conditions



• Key Challenge: verification does not work near the origin (numerical 
instability, precision limits, etc). 
 
 
 
 

• Theorem [informal]: Under these conditions, if we start in RoA : 
a) we will reach  in finite time, 
b) we will reach  infinitely often, and 
c) for any , there is  such that -stability implies that we converge to  
in finite time.

D
B(0,ϵ)
B(0,ϵ)

γ ϵ ϵ B(0,γ)

Approximately Lyapunov Stability

1)   
2) 

V(0) = 0, V(x) > 0 ∀x ∈ R\B(0,ϵ)
∃η > 0 : V( f(x, π(x))) ≤ V(x) − η ∀x ∈ R\B(0,ϵ), u = π(x)

-Lyapunov conditions over ϵ R



• We represent policies  and Lyapunov functions  as NNs with 
ReLU activation function.  

• The main challenge is to verify the term 
, where the dynamics  is nonlinear. 

• We split the region  into grid, and use linear function to upper/lower 
bound  within each sub-region. 
- The problem can now be written into MILP. 
- Automatically refine grid for tighter bounds.

πβ(x) Vθ(x)

V( f(x, π(x))) ≤ V(x) − η
∀x ∈ R\B(0,ϵ) f(xt, ut)

R
f(xt, ut)

Verification Algorithm (MILP)

1d illustration



• The goal now is to jointly learn  to provably satisfy the  
-Lyapunov stability conditions.  

 
 
 

• Counterexamples in set  comes from: 1) a novel MILP-based 
verifier (slow); 2) a novel gradient-based approach (fast).

(πβ, Vθ)
ϵ

S

Learning Algorithm

min
θ,β ∑

S

L(x; Vθ, πβ)

Lyapunov loss function



• We use projected gradient descent (PGD) to solve two 
optimization problems which enables faster counterexample 
generation: 
 
 
 

• PGD: , where  is the 
objective for the minimization problem.

xk+1 = Π{xk − αksgn(∇Fθ(xk))} F( ⋅ )

Gradient-Based Approach (Counterexamples)

  min
x∈R

Vθ(x)

min
x∈R

Vθ(x) − Vθ( f(x, πβ(x)))



• The goal now is to jointly learn  to provably satisfy the  
-Lyapunov stability conditions.  

 
 
 

• Counterexamples in set  comes from: 1) a novel MILP-based 
verifier (slow); 2) a novel gradient-based approach (fast). 

• Keep training until  and  pass verification.

(πβ, Vθ)
ϵ

S

πβ(x) Vθ(x)

Learning Algorithm

min
θ,β ∑

S

L(x; Vθ, πβ)

Lyapunov loss function



Experiments

CartPole PVTOLInverted Pendulum Path Tracking



• Key observations: our approach is both much faster, and much 
more effective than prior art for learning provably stable policies.
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Experiments
ROA plot of inverted pendulum (left) and path tracking (right)



• In two more complex domains (CartPole and PVTOL), ours is the 
first automated approach to achieve provable stability for actual 
underlying nonlinear dynamics.

Experiments

(x, ·x, θ, ·θ) = (0,0,π,0) (x, y, θ, ·x, ·y, ·θ) = (0,0,0,0,0,0)



• We utilize the structure of the Lyapunov condition in discrete-time 
nonlinear systems to enhance verification efficiency. 

• We introduce a gradient-based algorithm for rapid counterexample 
generation, accelerating the model training process. 

• We propose “approximately Lyapunov stability”, which formalizes the 
impact of numerical instability issues of verifying near the origin. 

• Our approach outperforms SOTA methods.

Takeaways



Thank you!


