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Learning Stable Policies

- Discrete-time nonlinear dynamics: x,, ; = f(x,, u,), where x,, u,
are state and control at time 7.

» Our Goal: learn a provably stable policy u, = x(x,).

« Stability: a dynamical system converges to a nominal state
whenever the starting state is in a “region of attraction (RoA)".
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Nominal state: (x, X, 8, 60) = (0,0,7,0)



Lyapunov Stability (Conventional)

* Lyapunov Stability (discrete-time controlled dynamical systems):
If policy u, = z(x,) and Lyapunov function V(x) satisfy the below
conditions, then x = 0 is stable.

Lyapunov conditions

1) V(0)=0,V(x)>0Vx #0
2) V(f(x; u)) < V(x) Vx,u, = m(x,)

+ Goal: synthesize a Lyapunov function V(x) and policy (controller)
u = 7m(x) over a region R such that conditions 1) and 2) hold on R.

» Sub-levelset D = {x € R | V(x) < f} is RoA.



Approximately Lyapunov Stability

« Key Challenge: verification does not work near the origin (numerical
instability, precision limits, etc).

,
e-Lyapunov conditions over R ////

1) V(0) = 0, V(x) > 0 Vx € R\B(0,¢)
2) dn > 0 : V(f(x, n(x))) < V(x) —n Vx € R\B(0,¢), u = m(x) // /

« Theorem [informal]: Under these conditions, if we start in RoA D:
a) we will reach B(0,¢) in finite time,
b) we will reach B(0,¢) infinitely often, and

[ ]B(0,e)
] R\B(0,¢)
|| B(0,7)

c) for any 7, there is € such that e-stability implies that we converge to B(0,y)

in finite time.



Verification Algorithm (MILP)

. We represent policies ﬂﬂ(x) and Lyapunov functions V,(x) as NNs with
RelLU activation function.

- The main challenge is to verify the term V(f(x, z(x))) < V(x) — 1
Vx € R\B(0,€), where the dynamics f(x,, u,) is nonlinear.

- We split the region R into grid, and use linear function to upper/lower
bound f(x,, u,) within each sub-region.

- The problem can now be written into MILP.
- Automatically refine grid for tighter bounds.

1d illustration



Learning Algorithm

. The goal now is to jointly learn (nﬂ, V,) to provably satisfy the
e-Lyapunov stability conditions.

Lyapunov loss function

min ) L(x;V, x
ni ' Lx; V. 1)

« Counterexamples in set S comes from: 1) a novel MILP-based
verifier (slow); 2) a novel gradient-based approach (fast).




Gradient-Based Approach (Counterexamples)

* We use projected gradient descent (PGD) to solve two

optimization problems which enables faster counterexample
generation:

min Vy(x)
XER

min Vi(x) — Vy(f(x, 74(x)))

XER

« PGD: x| = II{x, — oysgn(VFy(x,))}, where F( - ) is the
objective for the minimization problem.



Learning Algorithm

. The goal now is to jointly learn (nﬂ, V,) to provably satisfy the
e-Lyapunov stability conditions.

Lyapunov loss function

min ) L(x;V, x
ni ZS‘, (x; Vg, 75)

« Counterexamples in set S comes from: 1) a novel MILP-based
verifier (slow); 2) a novel gradient-based approach (fast).

- Keep training until 7z4(x) and Vy(x) pass verification.



Experiments
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Experiments

Table 1: Inverted Pendulum

Valid Region | Runtime (s) | ROA Max ROA  Success Rate
NLC (free) zll2 < 6.0 |28+29 11+4.6 22 100%
NLC (max torque 6.0) zll2 <6.0 |5194+184 13+27 66 20%
UNL (max torque 6.0) Tl < 4.0 | 821 £ 227 1+2 7 30%
LQR Tlloo < 0.8 <1 14 14 success
SOS Tl < 1.7 <1 6 § success
DITL Tlloo <12 8.1 +£4.7 61 +31 123 100%

« Key observations: our approach is both much faster, and much
more effective than prior art for learning provably stable policies.



Experiments

Table 2: Path Tracking

Valid Region | Runtime (s)| ROA Max ROA Success Rate

NLC zll2 < 1.0 109 £+ 81 0.5+0.2 0.76 100%

NLC z|ls < 1.5 151 £+ 238 1.44+09 2.8 80%

UNL |2 < 0.8 925 + 110 0.1+0.2 0.56 10%

LQR Tlleo < 0.7 <1 1.02 1.02 success

SOS Tlloo < 0.8 <1 1.8 1.8 success
DITL (LQR) Tloo < 3.0 9.8+4 8+ 3 12.5 100%

DITL (RL) Tlloo < 3.0 14411 9+ 3.5 16 100%

« Key observations: our approach is both much faster, and much
more effective than prior art for learning provably stable policies.



Experiments

ROA plot of inverted pendulum (left) and path tracking (right)
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« Key observations: our approach is both much faster, and much
more effective than prior art for learning provably stable policies.



Experiments

* |In two more complex domains (CartPole and PVTOL), ours is the
first automated approach to achieve provable stability for actual
underlying nonlinear dynamics.
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(x,x,0,0) = (0,0,7,0) (x,,0,x,9,60) = (0,0,0,0,0,0)



Takeaways

We utilize the structure of the Lyapunov condition in discrete-time
nonlinear systems to enhance verification efficiency.

We introduce a gradient-based algorithm for rapid counterexample
generation, accelerating the model training process.

We propose “approximately Lyapunov stability”, which formalizes the
Impact of numerical instability issues of verifying near the origin.

Our approach outperforms SOTA methods.



Thank youl!




