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roper Binding
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Improper Binding

luttered room

A checkered bowl in a ¢

[}

Leak “out of" Prompt
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Improper Binding

A horned lion and a spotted monkey
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Improper Binding
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A hernred lion and a spotted monkey

15



Improper Binding

A hernred lion and a spotted monkey
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Improper Binding | MidJourney-5

A yellow flamingo and a a checkered bowl in a
pink sunflower cluttered room

LB .

o horned lion and a
spotted monkey
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Improper Binding | DALL-E 3

A pink sunflower and a a checkered bowl in o
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Improper Binding | DALL-E 3
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Why does it happen?

e The underlying model does not represent the relations between words

e T[he text encoder acts to a large extent as a bag of words
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How do we solve this?

e Use parser to inject linguistic knowledge
e Uncover semantic constraints

e Enforce the constraints by intervening in the generation process

21



SynGen | Our goal

e We seek to fix all three leakage types

e Ininference-time (no training or fine-tuning)
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SynGen | Our approach

e Obtain the syntactic structure of the prompt
e Guide the diffusion on the prompt's syntax

e Steer the cross-attention using syntax in inference-time
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SynGen | Syntactic structure
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SynGen | Syntactic structure

conj
= |
A red crown and a golden strawberry

l

S, = {crown, red}
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SynGen | Syntactic structure

conj
= |
A red crown and a golden strawberry

l

S, = {crown, red}

l

S, = {strawberry, golden}
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SynGen | Obtaining Cross Attention Maps

_

“A red crown
and a golden
strawberry”

“Prompt-to-Prompt Image Editing with Cross Attention Control" by Hertz et al,, 2022
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SynGen | Obtaining cross-attention maps

/7 Cross-attention
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The figure is taken from “Prompt-to-Prompt Image Editing with Cross Attention Control*
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SynGen | Aligning the denoising process

e Cross-attention maps are (token,patch) pairs and are derived from the latent
e We can define a loss that updates the latent (noise)

30



SynGen | Aligning the denoising process

e Cross-attention maps are (token,patch) pairs and are derived from the latent
e We can define a loss that updates the latent (noise)

o encourage overlap of maps corresponding to
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SynGen | Aligning the denoising process

e Cross-attention maps are (token,patch) pairs and are derived from the latent
e We can define a loss that updates the latent (noise)

o encourage overlap of maps corresponding to

Positive
Loss
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. A
and a golden strawberry

4_._—/’21:11_;——~—”’//, Negative
Loss

crown

o discourage overlap with all other maps
//’
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SynGen | Computing the loss

e Minimize distance over related (entity, modifier) pairs
o Normalize maps

o Compute Symmetric KL

e Maximize distance over non-related (entity, modifier) pairs
o Normalize maps
o Compute Symmetric KL

o Negate result

e Addingtheterms: L= Lpo + L

s neg
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SynGen | Workflow
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SynGen | Workflow

(a) Extract Entities and Modifiers

conj
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SynGen | Workflow

(a) Extract Entities and Modifiers
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SynGen | Workflow

(a) Extract Entities and Modifiers

conj
det

l

A red crown and a golden

(o) Diffusion Process

SynGen Step
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Extract cross attention maps
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SynGen | Evolution of Cross-attention Maps

Prompt

red

a red crown and a

golden strawberry

crown

oolden

strawberry

‘Attend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image Diffusion Models" by Cheffer and Alaluf et al,, 2023
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Semantic Leak in Prompt Semantic Leak out of Prompt Attribute Neglect

A yellow flamingo A checkered bowl A horned lion
and in and
a pink sunflower” a cluttered room" a spotted monkey”
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Experiments

We compare our method to three baselines
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Experiments

We compare our method to three baselines
o Attend-and-Excite, StructureDiffusion, Stable Diffusion
e Across two existing datasets and a novel challenging one by us

e Using human raters on two metrics
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Experiments | Datasets

Key
Challenges

Format

Examples

# Examples

ABC-6K

* Subset of MSCOCO
(human authored)

* Contains
contrastive examples

Free-form text

A white fire hydrant sitting
in a field next to a red
building

600

Attend-and-Excite

* Entities are objects
or animals

* Only colors as
modifiers

A {color-1} {entity-1} ond a

{color-2} {entity-2}

A monkey and a black bow

177

DVMP (ours)

* More objects and
animals

*Many types of modifiers

* Much harder sentences

A {modifier-1} ... {entity-1} ond
a {modifier-2} ... {entity-2} ...

a wooden crown and a furry

baby rabbit and a pink metal
bench

600
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Experiments | Human Evaluation

e Concept Separation: “Which image best matches the description?”
e Visual Appeal: “Which image looks overall better or more natural?”

e Select awinning model or “no winner"

e Raters on Mechanical Turk
o J3raters
o 100% on qualification test, 2 99% approval, 2 5000 HITs

e The maqjority decision was selected
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Results | Quantitative

-

“Which
output best
matches the
prompt?”
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(our challenge set)
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Results | Quantitative

/

“Which

prompt?”

\

output best
matches the

\ Concept Separation by Dataset and Model
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ABC-6K Attend & Excite DVMP
(our challenge set)

Concept Separation improvement by 117% on average
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Results | Quantitative

Visual Appeal by Dataset and Model
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Results | Quantitative

Visual Appeal by Dataset and Model
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Visual Appeal improvement by 63% on average
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Conclusion

e We tackle improper binding, where visual interpretation doesn't
match the prompt

e We propose SynGen, to improve image-text alignment
o Aninference-time method (no training or fine-tuning!)
o Incorporates a linguistic-driven objective function to steer cross-attention
o SOTA performance on all three datasets
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Take SynGen for a ride!

a N

Say hi @ poster sess!
Today 5:15-7:15 PM.

Great Hall & B1 + B2

@oster No. 615 /

Thank you!

@RoyiRassin

rassinroyi@gmail.com
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