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Figure 1: Adversarial examples generated by different methods are located in different
regions on the surface of the loss function.

Motivation: Inspired by the observation that flat local minima are correlated with good
generalization in deep learning, we are motivated to explore whether flat local optima can
improve adversarial transferability.
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» To the best of our knowledge, it is the first work that empirically validates that adversarial examples
located 1n flat regions have good transferability.

» We propose a novel attack called Penalizing Gradient Norm (PGN), which can effectively generate
adversarial examples at flat local regions with better transferability.

» Empirical evaluations show that PGN can significantly improve the attack transferability on both
normally trained models and adversarially trained models, which can also be seamlessly combined with

various previous attack methods for higher transferability.
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® Optimization problem:

J(w“dv, y; 0) — X -

max
zvveB,(xz)

max
JE’EBC (madv

)ImeJ(w'ay;ﬁ’)Hz :
However, it is impractical to calculate the maximum
gradient. Hence, we approximately optimize above

Equation by randomly sampling an example at each
iteration respectively.
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Figure 2: The average attack success rates (%) of
I[-FGSM and MI-FGSM w/wo the gradient
regularization on seven black-box models. The
adversarial examples are generated on Inc-v3.
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® Approximate solution:

max ﬁ( adlsys 9) ( ,ay; 9) — A ”V;I;'J(i'ﬂ’,y; 9)||2a s.t. 2’ € BC(madv)‘

zedve B (z)
Vo J(z',y;0)
Vo £(2°%, y;0) =~ Vo (2, 4;0) — X - V2J(2', 33 0) - .
“V:c J(:I} » Y5 )||2
® Finite Difference Method:
a P VedJ(z+ a-v,y;0) — V,J(z,y;0) - V.J(z,y;6)
Vall@3:6) v a U T @ w0,

V(@' y;0)
|V J (!, ?)'59)”2
Vm:J(:ﬂ’ +a-vy;0)— Ve J(x, y; 6)

o

V paaw L2y, 0) = Vo J (2, y;0) — X - V2, J(2',y:0) -

22

I’y 0) +

A A
- (1 o a) ' V-'E"](va'f 5(7]) + a 'V':r:"]('rjr + a "Uay;()).
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® Gradient update:

A
V oo LT i, y;0) ~ (1 —6) - VyJ(2),y;0) + 6 - VuJ(z) + a-v,y;0), &= =

® Generate adversarial examples: : _ _
Algorithm 1 Penalizing Gradient Norm (PGN) attack method

Input: A clean image = with ground-truth label y, and the loss function ./ with parameters £.

ThlS approaCh lntI'OduceS variance due to the Parameters: The magnitude of perturbation ¢; the maximum number of iterations, T'; the decay

factor ju; the balanced coefficient §; the upper bound (i.e., {) of random sampling in {-ball; the

random sampling process. To address this 1SSU€, umber of randomly sampled examples, N

. : go=0, 28" =2, a=¢/T;
we randomly sample multiple examples and } g7 % 4" =% @7

. : 3 Setg= O;
average the gradients of these examples to obtain  ; #9= o
. 5 Randomly sample an example =’ € B ( "“d”),
a more Stable gradlent' 6: Calculate the gradient at the Sdmple ¢ =V, J(z:’., y; 0);
N 7 Compute the predicted point by 2* = 2’ — o - ||qu1 ;
1 Z v J (z},4;0) +6-Vud(z, +a-v,y; 9)] ) 8: Calculate the gradient of the predicted point, g* = Vy-J (", y;0);
=0 b 9: Accumulate the updated gradientby § =g+ - [(1—8) - g’ + - g*]:
10: end for )
Y 1 g =g+ s
g1 =K Gt + 7 G0 = liall,
”9“1 12: Update r?fl via 'rtf{ =g, () [ 0% o 51gn(gt+l)]
13: end for
14: return z°9v = padv,
m?ftl‘ = Ip,(z)|® [ ot Slgn(gﬁrl)} iL‘Sd” = . Output: An adversarial example 244",
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Experimental Results

Table 1: The untargeted attack success rates (%) of various gradient-based attacks in the single model setting. Here *
indicates the white-box model.

‘ Model ‘Attack| Inc-v3 Inc-v4 IncRes-v2  Res-101  Inc-v3.yns3 Inc-v3epa IncRes—vZens‘

Inc-v3

MI
NI
VMI
EMI
RAP
PGN

100.0+0.0*
100.0+0.0*
100.040.0*
100.0£0.0*
99.940.10%
100.0-£0.0*

51.04£0.47
61.4+£0.42
74.8+0.58
80.7£0.58
84.5£0.69
90.6+0.67

45.8+0.60
59.6+£0.54
69.9+0.92
77.1£0.37
79.3£0.47
89.5+0.75

49.0+0.24
57.2+0.18
65.5+0.67
72.440.83
76.51£0.65
81.2+0.68

22.6+0.52
22.5+0.37
41.60.54
33.0£0.61
56.9£0.84
64.6+0.75

22.04+0.35
22.7£0.35
41.610.54
31.9£0.49
51.3£0.62
65.6+0.94

10.94+0.24
11.5+0.26
25.0+0.34
17.0£0.48
31.9£0.35
45.3+£0.77

Inc-v4

MI
NI
VMI
EMI
RAP
PGN

57.2£0.36
62.8+0.43
77.6+0.65
84.24+0.62
85.3+0.74
91.21+0.58

100.0+0.0*
100.0+0.0*
99.8+0.10*
99.7+0.10*
99.5+0.21*
99.61+0.15%

46.1£0.14
52.7+0.34
69.8+0.41
75.0+0.70
79.5+0.62
87.61:0.74

51.5£0.33
56.7£0.19
66.7+0.33
74.4+0.64
77.2+£0.42
83.5+0.53

19.1£0.46
19.240.25
41.1+0.87
31.5+0.44
45.2+0.69
67.01:0.68

18.4£0.23
18.3+0.37
41.2+0.54
28.010.65
46.8+£0.48
64.21-0.63

10.2£0.36
11.74+0.29
27.0£0.24
16.24+0.36
29.3+0.51
49.11+0.82

IncRes-v2

MI
NI
VMI
EMI
RAP
PGN

58.240.21
60.3£0.35
78.240.64
85.2+0.78
87.1£0.75
92.0£0.69

52.4+0.41
57.1£0.17
77.0+0.57
83.3+0.29
84.2+0.45
92.3+0.63

99.3+0.21*
99.5£0.17*
99.1+0.36*
99.7+0.18*
99.410.28*
99.8+0.10*

50.7+0.26
55.3£0.35
66.0+0.48
74.0+0.56
79.41+0.64
83.5+0.41

22.0+0.37
18.3£0.18
47.6£0.69
38.4+0.48
50.3+=0.47
74.60.75

22.0£0.31
19.3£0.29
43.3+0.36
33.84+0.53
49.8+0.89
71.5+0.64

13.84+0.43
12.14+0.16
37.7+£0.37
24.1+0.48
40.2+0.54
66.621-0.58

Res-101

MI
NI
VMI
EMI
RAP
PGN

51.5+0.26
55.6+0.35
75.0+0.40
74.3+0.65
80.4%0.75
86.2+0.84

42.24+0.35
46.910.41
69.24+0.59
71.7+0.47
75.5+0.56
83.3+0.66

36.3£0.24
40.8+£0.28
63.0+0.84
62.6+0.29
68.0+£0.84
77.8+£0.69

100.0+0.0*
100.0+0.0*
100.04+-0.0*
100.04+-0.0*
99.9+0.10*
100.0-£0.0*

18.7£0.32
17.5£0.57
35.94+0.41
25.7£0.74
40.3+0.47
63.1+1.32

16.6£0.14
17.6£0.42
35.7£0.87
24.6+0.98
39.9+0.73
62.9+0.74

9.0+0.22
9.24+0.24
24.1+0.57
13.3+0.68
30.4%1.03
50.8+0.88
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Table 4: Comparison of the approximation effect between directly optimizing the second-order Hessian matrix and

using the Finite Difference Method (FDM) to approximate. "Time" represents the total running time on 1,000 images,
and "Memory" represents the computing memory size.

| Attack [H,,, FDM | Inc-v3 Inc-v4 IncRes-v2 Res-101 Res-152|Time (s) [ Memory (MiB) |

X X [100.0F 278 190 _ 381 352 | 5231 1631
LEGSM| v X 1000+ 392 302 470 455 | 469.54 7887
/7 100.0% 379 286 457 446 | 96.42 1631
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Figure 3: Visualization of loss surfaces along two random directions for two randomly sampled adversarial examples
on the surrogate model (Inc-v3).
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» Inspired by the observation that flat local minima often result in better generalization, we assume and
empirically validate that adversarial examples at a flat local region tend to have better adversarial
transferability.

» We optimize the perturbation with a gradient regularize in the neighborhood of the input sample to generate
an adversarial example 1n a flat local region. we approximates the Hessian/vector product by interpolating the
first-order gradients of two samples. To better explore its neighborhood, we adopts the average gradient of
several randomly sampled data points to update the adversarial perturbation.

» Our PGN can be seamlessly integrated with other gradient-based and input transformation-based attacks to
further improve adversarial transferability.

Limitation: Although we have experimentally verified that flat local minima can improve the transferability of
adversarial attacks, there is still a lack of theoretical analysis regarding the relationship between flatness and
transferability. We hope our work sheds light on the potential of flat local maxima in generating transferable
adversarial examples and provides valuable insights for further exploration in the field of adversarial attacks.
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Thanks!

Codes: https://github.com/Trustworthy-AlI-Group/PGN
Paper: https://arxiv.org/abs/2306.05225
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