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.
Non-Smooth Weakly Convex Constrained Optimization

Problem formulation:

f* = mxin f(x) st g(x)<0 (P)

Assumption 1 |

o f and g are real-valued and M-Lipschitz continuous (but not necessarily
smooth).

o f and g are p-weakly convex (i.e., f(x) + 5||x||? and g(x) + 5||x||* are
convex).
o f:=inff(x) > —o0.
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Near e-Stationarity

Following the literature on weakly convex optimization (Davis and Drusvyatskiy,
2019, Davis and Grimmer, 2019, Ma et al., 2020, Jia and Grimmer, 2022)
consider the following near e-stationarity.

Definition |

x is an e-stationary point if there exist A\ > 0, {; € 9f(x) and ¢, € Jg(x) s-t.
[+ 2] <6 e <é, gx) <, A>0.

Definition |

x is a nearly e-stationary point if there exists X s.t. X is an e-stationary point
and ||x — x|| <e.
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Existing Techniques

o Solving (P) means to find a nearly e-stationary point of (P).

o Existing double-loop methods (Ma et al., 2020, Boob et al., 2023, Jia and
Grimmer, 2022) find a nearly e-stationary point of (P) with oracle complexity
O(1/€*) under different CQs.

o The oracle complexity is the total number of times for which the algorithm
queries the subgradient or function value of f or g.
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Main contribution

o Study the classical switching subgradient (SSG) method (Polyak, 1967)
and show that,

o as a single-loop first-order algorithm, SSG can also find a nearly e-stationary
point of (P) with oracle complexity O(1/¢€*).

o Invent a switching step-zize rule to accompany the switching subgradient.
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.
Switching Subgradient Method

Algorithm 1: Switching Subgradient (SSG) method

Input: x(o), T, step-sizes n: > 0 and tolerances ¢; > 0.
fort=0,1,---, T —1do
if g(x\)) < ¢ then
‘ XD = O — ¢ for some ¢! € 9F(xV) and, | = 1 U {t}.
else
‘ x(ED = x(O _ mC(gt) for some Cg) € dg(x') and, J = JU {t}.
end
end

Output: x{™) where 7 is sampled from / U J using Prob(r = t) = Ne) S ecro Ms-
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Technical Lemmas

Assumption 2 (Uniform Slater’s condition in Ma et al. (2020))

There exist € > 0, 6 > 0 and p > p such that Slater’s condition
Jy st gly) + Sly -« < -
holds for any x satisfying g(x) < &. (This is the CQ for SSG in our results.)

Denote: g;(x) = max{g(x),0}, £L={x| g(x) =0}, S ={x ]| g(x) <0}.
Lemma

Subgradient of g is bounded away from zero on L:

m|n ||C || >v:=+/20(p—p), VY x €L for some p € (p, p.

Local error bound holds:

(v/2) - dist(x,S) < g (x) if dist(x,S) < v/p.
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.
Oracle Complexity

When g(x(t)) > €, SSG is essentially solving a sharp weakly convex unconstrained
problem

S = arg min g4 (x),
X
and thus Davis et al. (2018) suggests applying the Polyak’s step-size in this case for the
Q-linear convegence on dist(x(*), S).
Theorem 1

Suppose p € (p,p] and e <& LetxX? €S, & = Y min {€/M,v/(4p)} and
e = { Tz min {(—:2//\/7,1//(4p)} /:fg(x(t)) < e
g(x)/1IcP 2 if g(x?) > €.
Then g(x) < €2, VYt >0, and SSG finds a nearly e-stationary point of (P) if
8M? (f(x(o)) —f+ 3M2/(2ﬁ)>
— p(1+2M/v)ve2 min{e2/M,v/(4p)}

= 0(1/64).

The choice of step-sizes {n;}+>0 in Theorem 1 shows the switching step-zize rule.
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