Distance-Restricted Folklore Weisfeiler-Leman
GNNs with Provable Cycle Counting Power

Junru Zhou - Jiarui Feng - Xiyuan Wang - Muhan Zhang

Introduction: Cycle counting

* Cycles are important local structures in graphs.
(especially in the context of chemistry!)

Bicyclopentyl Naphthalene

Bicyclopentyl Naphthalene

N
~_

two 5-cycles and no 6-cycles no 5-cycles and two 6-cycles

()

Introduction: Message passing GNNSs

* Message passing GNNs (MPNNs) update node representation h,, by

h® = O (h&tn’ @ m () (hgn,h?()tn,ew))

veN (u)

£, m®: learnable functions

@D: permutation-invariant aggregation function (e.g. sum, mean)
Use a readout layer to encode graph G: hg = R({h, : v € Vg }),
* MPNNSs are not more powerful than WL(1) test. [Xu et al., 2018]

w® (v) = HASH® (W(t_l)(v), POOL® ({{W(t_l)(u) PU € N(U)]}))

The difficulty of MPNNs to count cycles

* MPNN:s fail to distinguish between G and H.

G 2 6 H 2 6
4
0 3 0 8
4 5
1 9 1 9
5
3 7 3 7

Why MPNNs cannot count cycles?

Why MPNNs cannot count cycles?

2 6
0 3 connected? (Both no for G and H)
4 5 e ‘\‘
1 9 / \‘l _.-~~"7 connected?
, L -
(ves for G but no for H)

3 7

H 2 6
4 2 MPNNSs cannot answer
0 either question, since

they only encode
information of the local
1 5

------ subtree.

Introduction: FWL(2) test

 FWL(2) test assigns a color W (u, v) for every 2-tuple (u, v) € V¢,
0(n?) space

Initialize: Give a unique color for three different cases, (i) u = v, (ii)
u, v connected, and (iii) u, v not connected.

Update:
W (y, v)

0(n3) time

Wy, v),
POOL® (| (W&, w), W ED(w,v)):w € VG]D)

Readout: W(*)(¢) = READOUT([W) (u,v): (u,v) € VZ])

= HASH®

Can FWL(2) test count cycles?

* FWL(2) test can count 3-cycles.

e Actually, FWL(2) can simulate the following procedure

Procedure: Count 3-cycles that passes nodes u and v.

if not (u and v are connected):
return 0
else:
return (# of w such that both u,w and w,v are connected)

Definitions of cycle counting

* Graph-level counts: E>_<j CO

#(5-cycle) = 2, #(6-cycle) = #(5-cycle) = 0, #(6-cycle) = 2

1 1
* Node-level counts:

#(6-cycle passing u) =2
#(6-cycle passing v) =

e Pair-level counts:
#(6-cycle passing u, v) =

#(6-cycle passing u,w) =0

Can FWL(2) test count cycles?

 FWL(2) counts cycles by counting closed walks!

* Take the example of counting 6-cycles.

\

Can be done by FWL(2)!

#(2-walku - w) =1
#(2-walkw - v)=1
#(2-walku - v) =2

#(6-closedwalku - w - v > u)=1*%1*2=2

‘ sum over all possible w

#(6-closed walku » - > v > u) =
2+2+12+16+2+0+2+0+0=36

‘ remove non-cycles

#(6-cycle passing u,v) =3

Wu,w) =

W(u,v)

#of £1-walks u - w

_ TR
1 NN

of £5-walks u - v

Ww,v) = | [JB 2= # of £,-walks w > v

knows # of closed
(£1 + fz + €3)-Wa|ks
passing u and v!

The key limitation is whether
FWL(2) can detect non-cycle
closed walks. The number of
such walks grows quickly as
cycles become longer.

FWL(2) can only count up to
7-cycles at node level.

Why FWL(2) can count cycles?

 Basically, two features are important for the cycle counting power of
FWL(2):

e 1. use 2-tuple (instead of nodes) as the basis of message passing

e 2. use the walk-like update rule

* It is possible to design more efficient algorithms than FWL(2) but
keep (almost) all of its counting power, as long as these two features
are kept.

The “local” nature of cycle counting

* Consider the following algorithm to count 3-cycles.

Procedure: Count 3-cycles that passes nodes u and v.

if not (u and v are connected):
return O
else:
return (# of w such that both u,w and w,v are connected)

* We notice that even if all tuples (u, v) with d(u, v) > 1 are ignored in
FWL(2) update, we can still calculate the count.

The “local” nature of cycle counting

* Namely, if we modify the update rule of FWL(2) to

if d(u,v) =1, then

WO (y,v) =

HASH® Wi wv),)
POOL®) (H(W(t_l) (u, w), WD (y, v)) w € N, (u) N]\fl(v)]])

else

WO (y,v) =0

* Then the ability to count 3-cycle is retained.

The “local” nature of cycle counting

 Similarly, if we modify the update rule of FWL(2) to

if d(u,v) < 2, then

WO (y,v) =

HASH(® W (),)
POOL®) (H(W(t_l) (u, w), WD (y, v)) d(u,w),dw,v) < Z]D

else

WO (y,v) =0

* Then the abilities to node-level count 3, 4, 5, 6-cycle are all retained.

d-Distance Restricted FWL(2) tests

* We propose d-Distance Restricted FWL(2) tests, or d-DRFWL(2) tests
as following. Different from FWL(2), d-DRFWL(2) test assigns a color
only to all (u, v) € VZ that satisfies 0 < d(u,v) < d.

Initialize: Give a unique color for (d + 1) different cases, (i) d(u,v) =
0,oru=wv,(ii)d(u,v) =1, (iii)d(u,v) = 2, ..

Note: We remark that this step can be unnecessary. One can still adopt the FWL(2)
initialization (only considering three cases, coinciding, connected or disconnected),
and use the update rule to generate distance encoding.

d-Distance Restricted FWL(2) tests

Update:
Foreachk =0,1,...,d,

W (u,v) = HASHY (W“‘”(u,v),(Mi’}“)(u,v))m .<d>, if d(u,v) =k, (6)
1,7

where HASH,(c) is an injective hashing function for distance £ and iteration ¢, and M, bt)(v) is

defined as
MED (y,v) = POOLZ-(t) ({{ (WO (w, v), WD (y,w)) :|w € N;(u) NN (v) }}) .

LY

The symbol (MJ()(u v)) stands for (Mgo(t) (u,v),Mécl(t) (u, v),...,M(’fét)(u, V)yen ey

0<1,5<d
M C’; (gt) (u, 'v)) Each of the POOLZ-(t) with 0 < 7, 7, k < d is an injective multiset hashing function.

d-Distance Restricted FWL(2) tests

Readout:

W(G) = READOUT ({{W(OO) (u,v) : (u,v) € V& and

0 <d(u,v) <d

.

d-DRFWL(2) GNNs

* d-DRFWL(2) GNNs are neural versions of d-DRFWL(2) tests.

Initialize: generate initial labeling h&(?,},o < d(u,v) < d.
., d

Update in each layer: Foreachk =0,1,...,d,
For each (u,v) € V& with d(u,v) = k,

0= P m (R,
weN; (u)ﬁ./\fj (v)

) — (@) [(1) (aijk(t))
uv k uv) uv 0<i,j<d)

d-DRFWL(2) GNNs

 Network structure:

f=MoRoLypoop_10---0010 L.

Ly, ...,Ly: d-DRFWL(2) GNN layers

0y, ..., 0p_1. activation functions

R: readout layer, giving the representation of G from the multiset
{rs) ¢ (u,v) € VZand0 < d(u,v) < d}

M: MLP

Discussion on d-DRFWL(2) tests

* d-DRFWL(2) test has a finite range of reception.

 Actually, d-DRFWL(2) tests cannot detect any (3d + 1)-cycle in a
graph, while using a larger d may make it possible.

o

(a) When running 4-DRFWL(2) in a 10-cycle, (b) When running 3-DRFWL(2) in a 10-cycle
there are 8 (marked as colored, with 3 on the (or any cycle with length > 10), there are
inferior arc and 3 on the superior arc) nodes only 4 (marked as colored) nodes contribut-
contributing to the update of any distance-4 ing to the update of any distance-3 tuple

tuple (u, v) (u,v)

Comparison with the WL hierarchy

Theorem 3.1. In terms of the ability to distinguish between non-isomorphic graphs, the d-DRFWL(2)
test is strictly more powerful than WL(1), for any d > 1.

Theorem 3.2. In terms of the ability to distinguish between non-isomorphic graphs, FWL(2) is
strictly more powerful than d-DRFWL(2), for any d > 1. Moreover, (d + 1)-DRFWL(2) is strictly

more powerful than d-DRFWL(2).

Cycle counting power of d-DRFWL(2) GNNs

can node-level count up to , but cannot
graph-level count more than 4-cycles.

* 2-DRFWL(2) GNNs can node-level count up to 6-cycles, but cannot
graph-level count more than 7-cycles.

* d-DRFWL(2) GNNs with d > 2 can node-level count up to 7-cycles,
but cannot graph-level count more than 8-cycles.

* Notice that 3-DRFWL(2) GNNs already possess equal cycle counting
power to FWL(2).

Complexity analysis

Method Cycle counting power Space Time
2-DI§I;'\IVIL/L(2) Up to 6-cycle at node level 0O(ndeg?) 0(ndeg*)
d-DRFWL(2) ; iy
GNNs (d > 3) Up to 7-cycle at node level 0(ndeg?) 0(n deg??)

2-GNN Up to 6-cycle at node level, at least at least
w/ subgraph height k >3 0(ndeg*) 0(ndeg®)

FWL(2)-based

- 2 3
GNNS Up to 7-cycle at node level 0(n*) 0(n3)

Experiments

Table 1: Normalized MAE results of node-level counting cycles and other substructures on synthetic
dataset. The colored cell means an error less than 0.01.

Synthetic (norm. MAE)

Method
3-Cyc. 4-Cyc. 5-Cyc. 6-Cyc. | Tail. Tri. Chor. Cyc. 4-Cliq. 4-Path Tri.-Rect.

MPNN 0.3515 0.2742 0.2088 0.1555 | 0.3631 0.3114 0.1645 0.1592 0.2979
ID-GNN 0.0006 0.0022 0.0490 0.0495 | 0.1053 0.0454 0.0026 0.0273 0.0628
NGNN 0.0003 0.0013 0.0402 0.0439 | 0.1044 0.0392 0.0045 0.0244 0.0729
GNNAK+ 0.0004 0.0041 0.0133 0.0238 | 0.0043 0.0112 0.0049 0.0075 0.1311
PPGN 0.0003 0.0009 0.0036 0.0071 | 0.0026 0.0015 0.1646 0.0041 0.0144
I2-GNN 0.0003 0.0016 0.0028 0.0082 | 0.0011 0.0010 0.0003 0.0041 0.0013
2-DRFWL(2) GNN 0.0004 0.0015 0.0034 0.0087 | 0.0030 0.0026 0.0009 0.0081 0.0070

Table 2: Normalized MAE results of node-level counting k-cycles
(3 < k < 7) on synthetic dataset.

Method Synthetic (norm. MAE) Node-level cycle (& substructure)

3Cyc. 4Cyc. 5Cye. 6Cyc. 7-Cyc counting on synthetic datasets
2-DRFWL(2) GNN 0.0004 0.0015 0.0034 0.0087 0.0362

3-DRFWL(2) GNN 0.0006 0.0020 0.0047 0.0099 0.0176

Table 3: MAE results on QM9 (smaller the better). The top two are highlighted as First, Second.

Target | 1-GNN 1-2-3-GNN DTNN DeepLRP PPGN NGNN I°-GNN | 2-DRFWL(2) GNN
. I 0.493 0.476 0.244 0.364 0.231 0.428 0.428 0.346
E t a 0.78 0.27 0.95 0.298 0.382 0.29 0.230 0.222
X p e rl m e n S €homo | 0.00321 0.00337 0.00388 0.00254 0.00276 0.00265 0.00261 0.00226
€lumo 0.00355 0.00351 0.00512 0.00277 0.00287 0.00297 0.00267 0.00225
Ae 0.0049 0.0048 0.0112 0.00353 0.00406 0.0038 0.0038 0.00324
R? 34.1 229 17.0 19.3 16.07 20.5 18.64 15.04
ZPVE | 0.00124 0.00019 0.00172 0.00055 0.0064 0.0002 0.00014 0.00017
Uy 2.32 0.0427 2.43 0413 0.234 0.295 0.211 0.156
U 2.08 0.111 2.43 0413 0.234 0.361 0.206 0.153
H 2.23 0.0419 2.43 0.413 0.229 0.305 0.269 0.145
G 1.94 0.0469 2.43 0.413 0.238 0.489 0.261 0.156
C, 0.27 0.0944 2.43 0.129 0.184 0.174 0.0730 0.0901
Table 8: Ten-runs MAE results on ZINC-12K (smaller the better), four-runs MAE results on ZINC-
250K (smaller the better), ten-runs ROC-AUC results on ogbg-molhiv (larger the better), and four-
runs AP results on ogbg-molpcba (larger the better). The * indicates the model uses virtual node on
ogbg-molhiv and ogbg-molpcba.
Method ZINC-12K (MAE) ZINC-250K (MAE) ogbg-molhiv (AUC) ogbg-molpcba (AP)
GIN* 0.163+£0.004 0.088+0.002 77.07£1.49 27.03+£0.23
PNA 0.188+0.004 — 79.05+£1.32 28.38+0.35
DGN 0.168+0.003 - 79.70£0.97 28.85+0.30
HIMP 0.151+£0.006 0.036+0.002 78.80+£0.82 -
GSN 0.11540.012 — 80.394+0.90 -
Deep LRP - _ 77.19-41.40 - Performance
CIN-small 0.094+0.004 0.044+0.003 80.05+£1.04 -
CIN 0.079-+0.006 0.022+0.002 80.94+0.57 - on real-world
Nested GIN* 0.111£0.003 0.02940.001 78.341+1.86 28.3240.41
GNNAK+ 0.08040.001 - 79.6141.19 29.30+0.44 datasets
SUN (EGO) 0.083+£0.003 - 80.03£0.55 -
I2-GNN 0.083+0.001 0.023+0.001 78.68+0.93 —
d-DRFWL(2) GNN 0.077+0.002 0.025+0.003 78.18+2.19 25.384+0.19

Notice: for datasets with large average

EX p e r| m e ntS degree (e.g. ogbg-ppa), our method

will be slow (especially the
preprocessing).

Efficiency & scalability

Table 4: Empirical efficiency of 2-DRFWL(2) GNN.

B _ QM9 ogbg-molhiv
QM3:n = 18.0,m = 18.7 Hiethod M (GB) Pre.(s) Train (s/epoch) | M (GB) Pre.(s) Train (s/epoch)
.= — cmory Ire. (S rain (S/€pocC cmory c. (S rain (s/€pocC
;‘c;’bé” molhiv: 7 = 25.5,m MPNN 2.28 64 45.3 2.00 2.4 18.8
' NGNN 13.72 2354 107.8 5.23 1003 427
12-GNN 19.69 5287 209.9 11.07 2301 84.3
2-DRFWL(2) GNN 2.31 430 141.9 4.44 201 44.3

Table 14: Empirical efficiency on ProteinsDB and HomologyTAPE datasets. “OOM” means the
method takes an amount of GPU memory more than 24 GB.

ProteinsDB: 11 = 475_9’ m = Method ProteinsDB HomologyTAPE

714.8 Memory (GB) Pre. (s) Train (s/epoch) | Memory (GB) Pre. (s) Train (s/epoch)

HomoIogyTAPE: n= MPNN 2.60 235.7 0.597 1.99 243.8 5.599

167.3, m = 256.7 NGNN 16.94 941.8 2.763 8.44 1480.7 15.249
I2-GNN OOM 1293 .4 OOM 21.97 3173.6 38.201
PPGN OOM 235.7 OOM OOM 243.8 OOM
2-DRFWL(2) GNN 8.11 1843.7 3.809 3.82 2909.3 30.687

Thanks!

Our arXiv link

Paper ID: 8038 O]
arXiv: 2309.04941 [cs.LG] I“
Code: https://github.com/zmI|72062/DR-FWL-2 [m]

