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Background: Emulators for chaotic systems

Goal: Consider a chaotic dynamical system du
dt = G(u, φ) with an unknown governing equation G

and a set of parameters φ that specify an environment. We aim to approximate the dynamics with

a data-driven emulator ĝθ:
ût+∆t := ĝθ(ût, φ).

Challenges:

We are interested in a system where the unknown chaotic G is

highly sensitive to initial conditions, and is impossible to exactly

predicted over a long term.

Noise exacerbates this unpredictability, and makes it difficult to

train emulators.

Our contributions:

Optimal-transport (OT) based method to train emulators to match

long-term known statistics characteristic of chaotic attractors.

Contrastive learning (CL) based method to implicitly train

emulators to match long-term unknown statistics of chaotic

attractors.

Emulators trainedwith RMSE vs. invariant measures
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Figure 1. Training with RMSE loss yields emulators with

very different statistical properties from the true chaotic

system (e.g. more periodic), whereas training with a

contrastive loss preserves the statistical properties of the

chaotic system.
Figure 2. Emulators are trained to take an initial state and

output future states in a recurrent fashion.
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Figure 3. Impact of noise on various error metrics using

ground truth simulations with increasingly noisy initial

conditions UG(u0 + η) and added measurement noise

UG(u0 + η) + η. Here, UG(·) refers to the solution given an

initial condition.

RMSE loss:

While widely used for training emulators,

RMSE does not capture long-term dynamics;

Chaos and noise make the predictions of

emulators trained with only RMSE degenerate

quickly over time.

Invariant measures:

Can capture time-invariant statistical

behavior of the true dynamics;

Have a much more robust response to noise.

Notations:

Sequence of dynamics. A sequence of K + 1 consecutive time points on the trajectory coming

from environments n = {1, . . . , N} is U(n)
I :I+K := {u(n)

ti
}I+K
i=I , where I is the beginning of the

time interval.

Time-invariant statistics. Any time-invariant statistical property SA of the dynamics on the

attractor A can be written as SA = EµA[s] =
∫
s(u) dµA(u) = limT→∞

1
T

∫ T s(uA(t)) dt for
some function s(u) where µA is a natural invariant probability measure of trajectroy in the basin

of the attractor A.

1st approach: Physics-informed optimal transport

We assume access to expert domain knowledge to define summary statistics s(ut) representing
physical property of the dynamical system. We aim to match the distributions of the statistics.

With discrete samples of statistics SI :I+K := {s(uti)}
I+K
i=I , we use the Sinkhorn algorithm [1] to

efficiently solve the entropy regularized optimal transport problem,

`OT(S, Ŝ) = 1
2

(
W γ(S, Ŝ)2 − W γ(S,S)2 +W γ(Ŝ, Ŝ)2

2

)
, (1)

whereW γ(S, Ŝ)2 is the Wasserstein distance with an entropy regularization term (of the scale γ)
and squared cost matrix. Our final loss is: `(θ) = α`OT + `RMSE.

2nd approach: Contrastive feature learning

In absence of prior knowledge, we train an encoder fψ to capture time-invariant statistics.

Key Premise:

Sequences from the same trajectory have the same chaotic attractor, and so should have

similar embeddings.

Sequences from different trajectories corresponding to different chaotic attractors should have

dissimilar embeddings.

For contrastive feature loss, we use the cosine distance between a series of features of fψ [2]:

`CL
(
U, Û; fψ

)
:=
∑
l

cos
(
f lψ(U), f lψ(Û)

)
, (2)

where f lψ gives l-th layer feature output. Our final loss is: `(θ) = λ`CL + `RMSE.

Experiments

Experimental setup. We have noisy observations u(t) with noise η ∼ N (0, r2σ2I). Baselines. We

consider the baseline as training with RMSE. Backbones. We use the Fourier neural operator [3].

Evaluation metrics.
Histogram error: Err(Ĥ,H) :=

B∑
b=1

‖cb − ĉb‖1, where H is a histogram of the invariant statistics

S, and cb is frequencies of the corresponding values of B bins.

Energy spectrum error:
1
T

∑
ut,ût∈U1:T ,Û1:T

‖|F [ut]|2 − |F [ût]|2‖1
‖|F [ut]|2‖1

, where F [·] is the spatial FFT.

Leading Lyapunov exponent (LE) error: The LE (λ) measures how quickly the chaotic system

becomes unpredictable. We report the relative absolute error as |λ̂− λ|/|λ|.
Fractal dimension (FD) error: FD (D) is a characterization of the dimension of the attractor. We

report the absolute error as |D̂ −D|.

Results

Lorenz-96 system dui

dt = (ui+1 − ui−2)ui−1 − ui + F. Let s(u) := {du
i

dt , (u
i+1 − ui−2)ui−1, ui}. We

use 2000 training samples with each φ(n) ∼ U([10.0, 18.0]).

Training Histogram ↓ Energy Spec. ↓ Leading LE ↓ FD ↓

`RMSE 0.215 0.291 0.440 3.580

`OT+`RMSE 0.057 0.123 0.084 3.453

`CL+`RMSE 0.132 0.241 0.064 1.894

Table 1. Performance on 1500-step predictions with

noise scale r = 0.3.

Training stats. Histogram ↓ Energy Spec. ↓ Leading LE ↓ FD ↓

S (full) 0.057 0.123 0.084 3.453

S1 (partial) 0.090 0.198 0.263 3.992

S2 (minimum) 0.221 0.221 0.276 3.204

Table 2. Performance of OT method for different choices
of summary statistics, r = 0.3: (1) full statistics
S(u) := {dui

dt , (ui+1 − ui−2)ui−1, ui}; (2) partial statistics
S1(u) := {(ui+1 − ui−2)ui−1}; or (3) minimum statistics S2(u) := {ū},
where ū is the spatial average.

Training Histogram ↓ Energy Spec. ↓ Leading LE ↓ FD ↓

`RMSE 0.255 0.307 0.459 3.879

`OT+`RMSE 0.055 0.124 0.080 4.015

`CL+`RMSE 0.130 0.193 0.031 1.747

Table 3. Emulator performance with reduced environment

diversity with r = 0.3. We shrink the parameter range for

generating the dataset from [10, 18] to [16, 18].
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Figure 4. Sampled dynamics and summary statistics

distributions.

Kuramoto–Sivashinsky (KS) equation ∂u
∂t = −u∂u∂x − φ∂

2u
∂x2 − ∂4u

∂x4.We define s(u) :=
{
∂u
∂t ,

∂u
∂x,

∂2u
∂x2
}
.

We generate 2000 training samples, with each φ(n) ∼ U([1.0, 2.6]).

Training Histogram ↓ Energy Spec. ↓ Leading LE ↓

`RMSE 0.390 0.290 0.101

`OT+`RMSE 0.172 0.211 0.094

`CL+`RMSE 0.193 0.176 0.108

Table 4. Performance on 500-step predictions

with noise scale r = 0.3.
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Figure 5. Energy spectrum of the sampled

dynamics.
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Figure 6. Sampled dynamics and summary statistics distributions.
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