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Combinatorial BAI with fixed confidence

Input: K arms (vk)kefk) with mean p € RK and X C {0, 1}
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Rule: At each round t, the learner pulls x(t) € X and observes

Yi(t) ~ vk iff x((t) = 1, and outputs 2 € X at her termination round 7.
Goal: Design a 0-PAC algorithm s.t. i*(p) € argmax,y (x, p) is
identified with prob. > 1—4 and P, [T < co] = 1 while minimizing E,, [7].

(Open Question) Is it possible to design a statistically optimal §-PAC
algorithm that runs in polynomial time? {:‘m



Prior works: a computational-statistical gap

Any §-PAC algorithm satisfies E,,[7] > T*(p)kl(d, 1 — 0), where
i 2
T*(n)™ ' = ilépz Fu(w) with F(w) = )\Ei/{}f(#)kz;l M

Solving F,(w) implicitly determines the most confusing parameter
(MCP).! Below are the existing statistically optimal BAI algorithms:

» Track-and-Stop[GK16] requires to repeatedly solve T*(fu(t—1))~!

= FWS [WTP21] has to solve probably O(2X) many convex programs

= CombGame [JMKK21] is MCP-oracle efficient

Difficulty in designing an efficient MCP algorithm (to evaluate F,(w))
comes from its domain Alt(p) = {X € A i*(A) #i*(n)}.

@,
ntuitively speaking, MCP is the closest parameter A* to trick a learner with {‘::E
the given allocation w into giving an incorrect answer i*(A*) # i*(u). i



Our efficient MCP algorithm exploits structural property

Structural properties about F,(w)

K
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Define f, = inf
I (7222 AeR:(i*(I;T)—x,)\)<0; 2
fe(w, p) = Maxa>0 Guw,u(X, @) (known by [CGL16])
guw,u(x, @) is linear in x and concave in o (our observation)

= @)= i, HEeam)= i mes apEoe)

However, we not only want to estimate F,,(w) but also the equilibrium
action X s.t. Fp(w) = Maxa>0 8w, u(Xe, ).
= Rules out many results on average-iterate convergence [DDK11, RS13]

and last-iterate convergence [AAST23, DP19] from applying.

The reason why x. is required is because we will use gradient-based {:b@}
KTH

method to solve maxyex Fpu(w).



Our efficient MCP algorithm exploits structural property

Theorem 1 (MCP) Let (w, ) € £+ x A. The output (F, %) returned by
(e,0)-MCP(w, p) satisfies:
s PlRu(w) < F<(1+e)Fu(w)] >1-0
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= the # of i*-oracle calls: O (

Algorithm 1: ( 0)-MCP(w, )

forn=1,2,-
(Follovv the—Perturbed—Leader) Z, ~exp(1)X and n, = 2

) vn
4 & ey (Z oo (X, ™) + { ,x>>

XAi*(p) Mn

(Best-Response) ol € argmax g,, ,.(x("™, a)
a>0

2= » ("*)7 oo
if /n> C9(1+€) . where 8uu(X ™) lg;;
eF n. € argmin,, ., Buo, (XM, o)) {ME

then return (F, x("));
end 4




The design of Perturbed Frank-Wolfe Sampling (P-FWS)

By the standard stochastic smoothing [FKM05, DBW12], the smoothed
Fun(w) = E 2 ~Uniform(B,) [ Fr. (w + nZ)] objective with noise level n > 0
has several nice properties:

U VF/,LJ](W) - EZNUniform(Bz)[VFu(w + ’/Z)]

O ’_:uyn is %-Smooth and I_—_”,,,(w) ﬂ Fu(w)

= All P-FWS need is the linear maximization i*-oracle and the
gradients (which can be evaluated by the envelope theorem [WTP21])!

High-level design of P-FWS
Let X be a set s.t. Vk € [K], there exists x € Xp s.t. xx = 1.

P-FWS alternate between two phases:
{ pull each x € A, once (to avoid high cost and boundary cases)

- b,
pull x(t) € argmax,¢ x <VFﬂ(t,1),m(dJ(t —1)), > (ideal FW update) {';H



The design of Perturbed Frank-Wolfe Sampling (P-FWS)

High-level design of P-FWS
Let Ap be a set s.t. Vk € [K], there exists x € Xp s.t. xx = 1.
P-FWS alternate between two phases:
pull each x € Ap once (to avoid high cost and boundary cases)
{ pull x(t) € argmaxyex (VFau(e—1).(@(t — 1)), x) (ideal FW update)

Theorem 2 (P-FWS) Let € A and 6 € (0,1). P-FWS is 6-PAC and
finishes in finite time

= P, llimsups_o it < T*(p)] =1

= [E,[7] is bounded by Poly(K) in moderate-confidence regime and
achieves the minimal in high-confidence regime

= the total # of i*-oracle calls is bounded by Poly(K). {S:}



The design of Perturbed Frank-Wolfe Sampling (P-FWS)

Proof Sketch of Theorem 2 (P-FWS)

Define good events: 551) when fi(t) is sufficiently close to pu, and St(z
when x(t) is closed to the ideal FW-update.

)

(Step 1) By maximum theorem [FKV14], we derive uniform
continuity for Fr and V:’_-_W_,7 in
= to simplify the analysis as if fi(t) = p for t > M

(Step 2) Under EMNEP, we derive a recursive formula for the
smoothed FW updates = to show our P-FWS converges

(Step 3) E.[7] < To(d) + > iomPu [(Et(l) N 552))6}, where

(0-dep.) |:05(§)1 920, T*(w)
(0-indep.) Y iop Py {(5}(1) ﬂff@)ﬂ < poly (K) @




Preliminary numerical results on X" as the set of spanning trees

All the experiments® are performed on a Macbook Air with 16 GB memory.

Table 1: Averaged sample complexity at § = 0.1 over 100 independent runs on a
graph with |X'| = 21025 spanning trees.

Algorithm Sample Complexity
P-FWS (ours) 1176
CombGame [JMKK21] 1277

Table 2: Averaged sample complexity at § = 0.1 over 100 independent runs on a
graph with |X| = 343385 spanning trees.

Algorithm Sample Complexity
P-FWS (ours) 1501
CombGame [JMKK21] OOM

2Qur code: https://github.com/rctzeng/NeurlPS2023-Perturbed FWS.


https://github.com/rctzeng/NeurIPS2023-PerturbedFWS

Conclusion and Future Works

= Qur proposed P-FWS is the first algorithm to close the
statistical-computational gap for combinatorial BAI by
exploring the structural properties of the lowerbound problem.

= |t remains largely unexplored whether one can close the

computational-statistical gap for other tasks, such as linear
BAI or best-policy identification.
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