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Combinatorial BAI with fixed confidence

Input: K arms (νk)k∈[K ] with mean µ ∈ RK and X ⊆ {0, 1}K

Example: Gaussian reward
νk = N (µk , 1), ∀k ∈ [K ]

m-sets

matchings

spanning trees

Rule: At each round t, the learner pulls x(t) ∈ X and observes
yk(t) ∼ νk iff xk(t) = 1, and outputs ı̂ ∈ X at her termination round τ .
Goal: Design a δ-PAC algorithm s.t. i⋆(µ) ∈ argmaxx∈X ⟨x, µ⟩ is
identified with prob. ≥ 1 − δ and Pµ[τ < ∞] = 1 while minimizing Eµ[τ ].

(Open Question) Is it possible to design a statistically optimal δ-PAC
algorithm that runs in polynomial time?
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Prior works: a computational-statistical gap

Any δ-PAC algorithm satisfies Eµ[τ ] ≥ T ⋆(µ)kl(δ, 1 − δ), where

T ⋆(µ)−1 = sup
ω∈Σ

Fµ(ω) with Fµ(ω) = inf
λ∈Alt(µ)

K∑
k=1

ωk(µk − λk)2

2 .

Solving Fµ(ω) implicitly determines the most confusing parameter
(MCP).1 Below are the existing statistically optimal BAI algorithms:

• Track-and-Stop[GK16] requires to repeatedly solve T ⋆(µ̂(t − 1))−1

• FWS [WTP21] has to solve probably O(2K ) many convex programs
• CombGame [JMKK21] is MCP-oracle efficient

Difficulty in designing an efficient MCP algorithm (to evaluate Fµ(ω))
comes from its domain Alt(µ) = {λ ∈ Λ : i⋆(λ) ̸= i⋆(µ)}.

1Intuitively speaking, MCP is the closest parameter λ⋆ to trick a learner with
the given allocation ω into giving an incorrect answer i⋆(λ⋆) ̸= i⋆(µ).
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Our efficient MCP algorithm exploits structural property

Structural properties about Fµ(ω)

Define fx(ω, µ) = inf
λ∈R:⟨i⋆(µ)−x,λ⟩<0

K∑
k=1

ωk(µk − λk)2

2 .{
fx(ω, µ) = maxα≥0 gω,µ(x, α) (known by [CGL16])
gω,µ(x, α) is linear in x and concave in α (our observation)

⇒ Fµ(ω) = min
x ̸=i⋆(µ)

fx(ω, µ) = min
x ̸=i⋆(µ)

max
α≥0

gω,µ(x, α)

However, we not only want to estimate Fµ(ω) but also the equilibrium
action xe s.t. Fµ(ω) = maxα≥0 gω,µ(xe , α).
⇒ Rules out many results on average-iterate convergence [DDK11, RS13]
and last-iterate convergence [AAS+23, DP19] from applying.

The reason why xe is required is because we will use gradient-based
method to solve maxω∈Σ Fµ(ω).
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Our efficient MCP algorithm exploits structural property

Theorem 1 (MCP) Let (ω, µ) ∈ Σ+ × Λ. The output (F̂ , x̂) returned by
(ϵ, θ)-MCP(ω, µ) satisfies:

• P
[
Fµ(ω) ≤ F̂ ≤ (1 + ϵ)Fµ(ω)

]
≥ 1 − θ

• the # of i⋆-oracle calls: O
(

∥µ∥4
∞∥ω−1∥2

∞
K3D5 ln K ln θ−1

ϵ2Fµ(ω)2

)
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The design of Perturbed Frank-Wolfe Sampling (P-FWS)

By the standard stochastic smoothing [FKM05, DBW12], the smoothed
F̄µ,η(ω) = EZ∼Uniform(B2)[Fµ(ω + ηZ)] objective with noise level η > 0
has several nice properties:

• ∇F̄µ,η(ω) = EZ∼Uniform(B2)[∇Fµ(ω + ηZ)]
• F̄µ,η is ℓK

η -smooth and F̄µ,η(ω) η↓0−−→ Fµ(ω)

⇒ All P-FWS need is the linear maximization i⋆-oracle and the
gradients (which can be evaluated by the envelope theorem [WTP21])!
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The design of Perturbed Frank-Wolfe Sampling (P-FWS)

Theorem 2 (P-FWS) Let µ ∈ Λ and δ ∈ (0, 1). P-FWS is δ-PAC and
finishes in finite time

• Pµ

[
lim supδ→0

τ
ln δ−1 ≤ T ⋆(µ)

]
= 1

• Eµ[τ ] is bounded by Poly(K ) in moderate-confidence regime and
achieves the minimal in high-confidence regime

• the total # of i⋆-oracle calls is bounded by Poly(K ).
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The design of Perturbed Frank-Wolfe Sampling (P-FWS)

Proof Sketch of Theorem 2 (P-FWS)

Define good events: E (1)
t when µ̂(t) is sufficiently close to µ, and E (2)

t
when x(t) is closed to the ideal FW-update.

(Step 1) By maximum theorem [FKV14], we derive uniform
continuity for Fπ and ∇F̄π,η in π

⇒ to simplify the analysis as if µ̂(t) = µ for t ≥ M

(Step 2) Under E (1)
t ∩ E (2)

t , we derive a recursive formula for the
smoothed FW updates ⇒ to show our P-FWS converges

(Step 3) Eµ[τ ] ≤ T0(δ) +
∑

t≥M Pµ

[
(E (1)

t ∩ E (2)
t )c

]
, where(δ-dep.) T0(δ)

ln δ−1
δ→0−−−→ T ⋆(µ)

(δ-indep.)
∑

t≥M Pµ

[
(E (1)

t ∩ E (2)
t )c

]
≤ poly (K )
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Preliminary numerical results on X as the set of spanning trees

All the experiments2 are performed on a Macbook Air with 16 GB memory.
Table 1: Averaged sample complexity at δ = 0.1 over 100 independent runs on a
graph with |X | = 21 025 spanning trees.

Algorithm Sample Complexity

P-FWS (ours) 1 176
CombGame [JMKK21] 1 277

Table 2: Averaged sample complexity at δ = 0.1 over 100 independent runs on a
graph with |X | = 343 385 spanning trees.

Algorithm Sample Complexity

P-FWS (ours) 1 501
CombGame [JMKK21] OOM

2Our code: https://github.com/rctzeng/NeurIPS2023-PerturbedFWS.
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Conclusion and Future Works

• Our proposed P-FWS is the first algorithm to close the
statistical-computational gap for combinatorial BAI by
exploring the structural properties of the lowerbound problem.

• It remains largely unexplored whether one can close the
computational-statistical gap for other tasks, such as linear
BAI or best-policy identification.
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