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• Kernel: 𝐾 𝑥, 𝑥! = Φ 𝑥 ,Φ 𝑥′ , Φ: 	𝒳 → ℋ maps the data to a feature space.

• Kernel machine (KM): linear function in the feature space

• RKHS norm of 𝑔: 𝛽 = ∑"#$% ∑&#$% 𝑎"𝑎&𝐾 𝑥", 𝑥&

 

   

Kernel Machine

𝑔 𝑥 = 𝛽,Φ 𝑥 + 𝑏 = ∑"#$% 𝑎"𝐾 𝑥, 𝑥" + b,   where 𝛽 = 	∑"#$% 𝑎"Φ 𝑥"  

Φ 𝑥"
𝑔 𝑥 = 𝛽,Φ 𝑥

Φ 𝑥&
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• Neural Tangent Kernel (NTK) (Jacot et al., 2018):
 

   measures the similarity between data points 𝑥, 𝑥! by comparing their gradients

• Under certain conditions (e.g., infinite width limit), NTK at initialization 𝑤' converges 
to a deterministic limit and keeps constant during training: 

Neural tangent kernel 

!Θ 𝑤; 	𝑥, 𝑥# = ∇$𝑓 𝑤, 𝑥 , ∇$𝑓 𝑤, 𝑥#

!Θ 𝑤%; 	𝑥, 𝑥# → Θ& 𝑥, 𝑥#

∇$𝑓 𝑤, 𝑥

∇$𝑓 𝑤, 𝑥′

𝑤

NTK at initialization Independent with 𝑤! 
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• Infinite-width NN trained by gradient descent with mean square loss ⇔ kernel 
regression with NTK [Jacot et al., 2018; Arora et al., 2019]

• Wide neural networks are linear in the parameter space [Lee et al., 2019]:

• Infinite-width NN trained by with ℓ)	regularized loss ⇔ ℓ)	regularized KMs with NTK, 
e.g. SVM [Chen et al., 2021]

Neural tangent kernel 

𝑓 𝑤*, 𝑥 = 𝑓 𝑤', 𝑥 + ∇+𝑓 𝑤', 𝑥 , 𝑤* −𝑤' + 𝑂(
1
𝑚
) 𝑚: width of NN
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Neural tangent kernel 

These equivalences are useful for analyzing NNs 
But only holds for infinite-width/ultra-wide NNs

Q1. Can we establish a connection or equivalence between general NNs 
(vs ultra-wide NNs) and KMs?

Φ 𝑥"

𝑓 𝑤, 𝑥… …

𝑚 → ∞

ℋ:Φ(𝑥) = ∇"𝑓 𝑤!, 𝑥 ℋ:Φ(𝑥) = ∇"𝑓 𝑤!, 𝑥

Φ 𝑥"

Φ 𝑥#

𝑓 𝑤, 𝑥

kernel regression SVM

equivalent

Φ 𝑥#

[Jacot et al., 2018; Arora et al., 
2019; Lee et al., 2019]

[Chen et al., 2021]
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How do the neural networks (NN) generalize on test data?

generalization gap:

𝐿$(𝑤): population loss 𝐿% 𝑤 : training loss

𝐺𝐴𝑃 = 𝔼.∼0 ℓ 𝑤, 𝑧 	− 1
2
∑3412 ℓ 𝑤, 𝑧 ≤	

Generalization theory of neural networks  

?
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1. VC dimension [Bartlett et al., 2019]

𝐺𝐴𝑃 ≤ 	𝑂( 𝐿 	#	;<	=>?>@A*A?B% log 𝑛 ) 

2. Norm-based bounds [Bartlett et al., 2017; …] 

𝐺𝐴𝑃 ≤ 	𝑂(
∏C#$
D 𝑊C

𝑛
)

• Other bounds:
• PAC-Bayes bounds (mainly focus on stochastic NNs)
• Information-theoretical approach (expected bound)

• Do not explain the generalization ability of 
overparameterized NNs. [Belkin et al., 2019]

• Vacuous: too large to be useful

Generalization theory: general NNs

𝐿: # of layers
𝑛: # of samples
𝑊&: weight of layer 𝑙 

Bartlett, et al.. Nearly-tight vc-dimension and pseudodimension bounds for piecewise linear neural networks. JMLR 2019.
Bartlett, et al.. Spectrally-normalized margin bounds for neural networks. NeurIPS 2017. 9



• Arora et al., 2019: for ultra-wide two-layer NN, 

•  Cao & Gu, 2019: for ultra-wide L-layer NN, 

Generalization theory: ultra-wide NNs

𝐺𝐴𝑃 ≤
2	𝐲E 𝐇F G$𝐲	

𝑛

𝐺𝐴𝑃 ≤ ?𝑂(𝐿 ⋅
2	𝐲E Θ G$𝐲	

𝑛
)

These bounds only hold for 
ultra-wide NNs

𝐇': NTK of the 
first layer

Q2. Can we establish tight (vs vacuous) generalization bounds for general NNs 
(vs ultra-wide NNs)?

10



1. Can we establish a connection or equivalence between general NNs (vs ultra-
wide NNs) and Kernel machines (KMs)? It can have many benefits:
1. New understanding of NN trained with SGD
2. Generalization bound for NNs from the perspective of kernel
3. Analyze NN architectures from this equivalence
4. Improve kernel method from the NN viewpoint

2. Can we establish tight (vs vacuous) generalization bounds for general NNs (vs 
ultra-wide NNs)?

Motivation of this work

Yes!
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• The set of trained NNs 𝒢H	can be much smaller than the whole set of NNs
• We characterize 𝒢H	through a connection between NN and KM

Intuition of our work

ℓ(𝑤', 𝑧) 𝒢9

ℓ(𝑤H, 𝑧)

whole set of NNs
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Loss Tangent Kernel (LTK):

   Compare with NTK:

Loss Path Kernel (LPK):

Loss Path Kernel

7K 𝑤; 𝑧, 𝑧# = ∇$ℓ 𝑤, 𝑥 , ∇$ℓ 𝑤, 𝑥#
∇$ℓ 𝑤, 𝑥

∇$ℓ 𝑤, 𝑥′
!Θ 𝑤; 	𝑥, 𝑥# = ∇$𝑓 𝑤, 𝑥 , ∇$𝑓 𝑤, 𝑥#

K9 𝑧, 𝑧#; 𝑆 = :
%

9
7K 𝑤(𝑡); 𝑧, 𝑧# 	𝑑𝑡

	 = :
%

9
∇$ℓ 𝑤, 𝑥 , ∇$ℓ 𝑤, 𝑥# 𝑑𝑡

∇$ℓ 𝑤(𝑡), 𝑥

∇$ℓ 𝑤(𝑡), 𝑥′

𝑤

𝑤(𝑡)

𝑤(𝑇)

𝑤(0)
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We can derive equivalence: 

Equivalence between neural network and kernel machine

ℓ 𝑤9 , 𝑧 = 	A
341

2

−
1
𝑛
K9 𝑧, 𝑧3; 𝑆 + ℓ(𝑤%, 𝑧)

With gradient flow (gradient descent with infinitesimal step size):

𝑑𝑤(𝑡)
𝑑𝑡

= −∇+𝐿I(𝑤(𝑡))	
𝑤 𝑡 + 1 − 𝑤 𝑡

𝜂
= −∇+𝐿I(𝑤(𝑡))	

𝜂 → 0

Kernel machine 
with LPK

Loss function 
at initialization

Loss function 
at time 𝑇

Very general equivalence!
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Equivalence: 

Equivalence between neural network and kernel machine

ℓ 𝑤9 , 𝑧 = 	A
;41

9<1

A
3∈>!

−
1
𝑚
K9 𝑧, 𝑧3; 𝑆 + ℓ(𝑤%, 𝑧)

Stochastic gradient flow (SGD with infinitesimal step size):

𝑑𝑤(𝑡)
𝑑𝑡

= −∇+𝐿I!(𝑤(𝑡))	
𝑤 𝑡 + 1 − 𝑤 𝑡

𝜂
= −∇+𝐿I!(𝑤(𝑡))	

𝜂 → 0

Sum of KMs with LPK

𝑆* ⊆ {1,… , 𝑛} is the indices of batch data, 𝑚: batch size 
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Generalization bound for NN trained by gradient flow

Verify the equivalence

• NN trained by gradient flow (GF) overlaps with the KM
• NN trained by gradient descent (GD) is also close with the KM

Loss for different 
samples
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Different training set induces distinct LPK. Set of LPKs with constrained RKHS norm:

Set of NNs trained to time 𝑇:

Generalization bound for NN trained by gradient flow

𝒦9 = K9 ⋅,⋅; 𝑆# : 𝑆# ∈ supp(𝜇⨂2 ,
1
𝑛@
A
3,A

K9 𝑧3′, 𝑧A#; 𝑆′ ≤ 𝐵@}

𝑆 = 𝑧3 341
2 ,  𝑆# = 𝑧3# 3412

𝒢9 = 𝑔 𝑧 =A
341

2

−
1
𝑛
K 𝑧, 𝑧3′; 𝑆′ + ℓ 𝑤%, 𝑧 : 	K ⋅,⋅; 𝑆# ∈ 𝒦9

ℓ(𝑤', 𝑧)
𝒢9

ℓ(𝑤H, 𝑧)

ℓ 𝑤9 , 𝑧  trained from 𝑆′ 
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• The set of trained NNs 𝒢H can be much smaller than the whole set of NNs
• We characterize 𝒢H	through a connection between NN and KM

Intuition of our work

ℓ(𝑤', 𝑧)

𝒢9

ℓ(𝑤H, 𝑧)

whole set of NNs

𝒢1

𝒢;

𝑆1′

𝑆@′

𝑆$′, 𝑆)′: different set of 
samples
𝒢*: set of NNs at time 𝑡 
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Compute the Rademacher complexity of	𝒢H,

Generalization bound for NN trained by gradient flow

𝐺𝐴𝑃 ≤ 2	min(𝑈$, 𝑈))

𝑈$ =
𝐵
𝑛

supL∈𝒦"V
"#$

%

K 𝑧", 𝑧"; 𝑆! +	V
"O&

Δ(𝑧", 𝑧&)	

maximum magnitude of the loss gradient in 
𝒦# evaluated with 𝑆 throughout the training 
trajectory.

range of variation of LPK in 𝒦# 

Can be estimated with training samples

Δ 𝑧", 𝑧# =
1
2
[sup(∈𝒦!K 𝑧", 𝑧#; 𝑆!

     −inf(∈𝒦!K 𝑧", 𝑧#; 𝑆! ]
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Compute the Rademacher complexity of	𝒢H,

Generalization bound for NN trained by gradient flow

𝑈$ =
𝐵
𝑛

supL∈𝒦"V
"#$

%

K 𝑧", 𝑧"; 𝑆! +	V
"O&

Δ(𝑧", 𝑧&)	

Similar with the bound of KM but with an 
additional supremum over 𝒦# 

Due to the set of kernels 𝒦#

Compare with the bound of KM with a 
fixed kernel 𝐾

𝐺𝐴𝑃 ≤
𝐵
𝑛 Y

"+,

-

𝐾 𝑥", 𝑥"	

𝐺𝐴𝑃 ≤ 2	min(𝑈$, 𝑈))

[Bartlett, P. L. and Mendelson, S. 2002]

Bartlett, P. L. and Mendelson, S. Rademacher and gaussian complexities: Risk bounds and structural results. 
Journal of Machine Learning Research, 2002.

• Our bound holds for general NNs
• When [𝒦#| = 1, our bound recovers KM’s bound
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Analyze the covering number of	𝒢H,

Generalization bound for NN trained by gradient flow

𝑈) = inf
TU'

𝜖
𝑛
+

2 ln𝒩(𝒢HI, 𝜖, 	 $)
𝑛

If the variation of the loss dynamics of gradient flow with different 
training data is small, 𝑈.	will be small.

• Can be estimated with training samples
• Can get similar bounds as 𝑈$, 𝑈% for stochastic gradient flow
• 𝑈$, 𝑈% can be used to analyze specific cases

𝒢/% = 𝑔 𝐙 = 𝑔 𝑧, , … , 𝑔 𝑧- : 𝑔 ∈ 𝒢/ , 
𝒩(𝒢/%, 𝜖, 	 ,) is the  covering number of 𝒢/%. 

𝐺𝐴𝑃 ≤ 2	min(𝑈$, 𝑈))
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Generalization bound for NN trained by gradient flow

Compare with previous NTK-based bounds

Much more general results!

Arora et al.. Fine-grained analysis of optimization and generalization for overparameterized two-layer neural networks. ICML 2020
Cao, Y. and Gu, Q. Generalization bounds of stochastic gradient descent for wide and deep neural networks. NeurIPS 2019. 23



Generalization bound for NN trained by gradient flow

Experiment of two-layer NN 

Tight bound!

Compare with 
VC dimension bound: 55957.3
Norm-based bound: 140.7
NTK-based bound (ultra-wide NN): 1.44
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For an infinite-width NN with constant NTK Θ 𝑥, 𝑥′

• 𝑈$, 𝑈) can also be used to analyze stable algorithms, norm-constraint NNs

Case study: Ultra-wide NN

𝐺𝐴𝑃 ≤
𝜌𝐵 𝑇
𝑛

V
",&
Θ 𝑥", 𝑥& 	

Compare with ?𝑂(𝐿	 ⋅ )	𝐲# X $%𝐲	
%

) [Cao & Gu, 2019],
1. no dependence on the number of layers 𝐿
2. holds for NNs with multiple outputs.

𝜌: Lipschitz constant of ℓ(𝑓, 𝑦)
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Use the bound to estimate the test loss and design minimum-training NAS 
algorithms:

Application: Neural architecture search

Gene(𝑤, 𝑆) = 𝐿I 𝑤 + 2𝑈BYZ

“RS”: randomly sample 100 architectures and 
select the one with the best metric value

Gene 𝑤, 𝑆 $: Gene(𝑤, 𝑆) at epoch 1

“Optimal”: the best test accuracy achievable in 
NAS-Bench-201 search space

“Best”: best accuracy over the four runs

𝑈012: simplified from the bound of stochastic 
gradient flow

NAS-Bench-201
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Conclusion

Generalization 
bound for NN

§ Holds for general NNs
§ Tighter bounds!

2 Useful in theory 
and practice 

§ Better bound for ultra-wide NNs 
§ Minimum-training NAS algorithms

3

Our theory has several benefits:

New equivalence 
between NN and KM

§ New kernel LPK 
§ Much more general equivalence

1
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Future works

Extend the results 
to obtain expected 
bounds.

3

What’s next?

Generalization bounds 
for other optimization 
algorithms.

1

§ SGD with momentum 
§ Adam

Study different NN 
architectures 

2

§ Full-connected NN 
§ CNN
§ Resnet 
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