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Cheap but accurate model of 𝑬𝑬𝑷𝑷

Ensemble Learning: 
Reduce estimation uncertainty
increase estimation robustness
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De-black box:
Explicit Error: error element that is efficient to calculate and differentiable
Implicit Error: error element that is (1) time-consuming to calculate or (2) indifferentiable

Hybrid Surrogate Error Model
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Experimental setting 
 Three engineering problem: Turbofan Design, 2. Electro-mechanical Actuator Design, 3, Pulse-width Modulation of 

13-level Inverters
 Configuration: 100 independent test cases per problem, the allowed query times to physical evaluation 𝐸𝐸𝑃𝑃 is 1000.
Metrics: 
Failure times: total failure times in 100 cases
Query times: the average query times needed for correcting state.
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 propose a novel approach, GEESE, to correct wrong state estimation through 
optimization, aiming at delivering both low error and high efficiency. 

 a hybrid surrogate error model to provide fast error estimations to reduce simulation 
cost and to enable gradient based backpropagation of error feedback.

 two generative models to approximate the probability distributions of the candidate 
states for simulating the exploitation and exploration behaviors.

 GEESE is tested on three real-world SAE inverse problems. Results show that it fails the 
least number of times in terms of finding a feasible state correction, and requires 
physical evaluations less frequently in general.

Future work: how to correct high-dimension state estimation? 
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