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1. Sample time-series 
data from two dynamical 
systems

2. Nonlinearly embed 
these into a higher 
dimension

3. Fit a linear model 
to the data (next-step 
prediction)

4. Compare dynamics 
matrices
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Beyond Geometry: Comparing the Temporal Structure of Neural 
Circuits with Dynamical Similarity Analysis (DSA)
Mitchell Ostrow, Adam Eisen, Leo Kozachkov, Ila Fiete

Dynamics ≠ Geometry1
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Highlights
• Dynamics and geometry are distinct levels for neural systems.
• Dynamics describe the core mechanisms of neural computation.
• Current methods for comparing neural networks are purely geometric.
• Our novel method, DSA, identifies dynamical similarities + differences 

between two systems.
• We leverage delay embeddings and Koopman operator theory to create a data-

driven comparison method that can disentangle geometry + dynamics.

BrainScore (Linear Regression + 
Pearson Correlation)2
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Shape Metrics

Our Solution: DSA

Problem: Shape Metrics only measure Geometric 
Similarity! 

Results: Same geometry, different dynamics

Same dynamics, different geometry
3-bit Flip-Flop8

DSA

Procrustes DSA

Rings: Invariance to non-topological deformation 

Selectivity to topological changes
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Bordelon and Pehlevan [2022] 

Delay Embeddings

Koopman Operator Theory

Topological Conjugacy of Dynamics

• Efficient method for 
nonlinear embedding.

• Allows us to 
reconstruct partially-
observed systems.5 

• A global linear description of a 
nonlinear system achieved by 
embedding observations into a 
Hilbert Space.6

• Finite approximation: Dynamic 
Mode Decomposition 
(HAVOK7).

• Conjugate systems have the same 
dynamical features: fixed points, 
limit cycles, invariant manifolds, 
etc.

• i.e. their shapes may be different, 
but they’re doing the same thing.

Theoretical Background
Data Generation

Observable Statistics

10 architectures, 4 tasks, 12
hyperparameter settings, 4
learning rules 
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Application: Identifying learning rules9,10

Procrustes

Properties

1. DSA is a proper metric.

2. Metric properties can be relaxed to purely identify conjugacy (by 
optimizing C over GL(n).

3. DSA is equivalent to the 2-Wasserstein Distance over the eigenvalues of 
Ax , Ay , when the dynamics matrices are normal. 

4. We optimize DSA using gradient descent over the Cayley Transform of 
arbitrary matrices. 

Line attractor Ring


