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Background:	Offline	RL
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Data	is	collected	once	as	a	dataset.	All	algorithms	are	trained	offline	without	
collecting	data	again.	(like	supervised	learning)	

p Offline	RL:

Figure	credits	to	Levine	et	al.,	2020.	



Background:	Extrapolation	Error

p Fundamental	issue	in	offline	RL:	

Distributional	shift	causes	cumulative	extrapolation	errors
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Introduction:	Offline	RL	Methods

p To	mitigate	extrapolation	errors
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Query	the	value	of	a’	that	are	
unseen	in	the	dataset

Policy		Constraint Conservative	Q-learning



Introduction:	Offline	RL	Methods

p Policy	constrain	/	conservative	Q	is	effective	but	introduce	detriment	bias
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Introduction:	Offline	RL	Methods

p Policy	constrain	/	conservative	Q	is	effective	but	introduce	detriment	bias

Ø The	trade-off	between	performance	and	constraint	needs	to	be	balanced	

manually	for	each	task.	
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Introduction:	Offline	RL	Methods

p Policy	constrain	/	conservative	Q	is	effective	but	introduce	detriment	bias

Ø The	trade-off	between	performance	and	constraint	needs	to	be	balanced	

manually	for	each	task.	

Ø Incapable	of	dealing	with	divergence	in	a	data-scarce	scenariowhere	OOD	

actions	are	more	likely	to	happen.
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The	performance	of	popular	offline	RL		
algorithms	with	the	varying	X%	
Mujoco Locomotion	dataset	



Motivation
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p Current	methodologies	leave	several	questions	unanswered	and	certain	

limitations.

Ø How	does	Q-value	divergence	actually	occur?	

Ø How	to	avoid	detrimental	bias?	



Self-Excite	Eigenvalue	Measure	
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p Identify self-excitation	cycle

!𝑄!(𝑠, 𝑎)

Bellman	Update:	Update	𝜃 by	gradient	descent

Neural		Network	Generalization:	
elevate	the	target	Q-value	



Self-Excite	Eigenvalue	Measure	
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p We	develop	theoretical	tools	with	Neural	Tangent	Kernel	(NTK)	to	enable	

three	parts	

Ø Understanding	Q-value	divergence

Ø Predicting	Q-value	divergence

Ø Better	resolving	Q-value	divergence



Understanding	Q-value	Divergence
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p (Theorem	1	and	3	in	our	paper)	Q-value	divergence	happens	when the	maximal	

eigenvalue	of	the	following	matrix 𝐴! (namely	SEEM) is	greater	to	0:

𝑋 is	 𝑠, 𝑎 points	in	the	dataset
𝑋!∗ is	 𝑠#, 𝜋$! 𝑠

# points,	potentially	OOD
𝐺$" 𝑋, 𝑋

# = 𝜙$(𝑋)%𝜙$ 𝑋# is	the	NTK	matrix depicting	the	strength	of	the	bond	
between X and X′	due	to	generalization,	where	𝜙$(𝑋):= ∇$𝑄$(𝑋)
𝛾 is	discount	factor

Intuition:	when	the	generalization	bond	between	dataset	points	and	OOD points
is	excessively	strong,	the	divergence	happens.



Predicting	Q-value	Divergence

14

p We	can	monitor	SEEM	value	to	know	whether	the	training	will	diverge.
p The	divergence	indication	property	of	SEEM:

the prediction Q-value is stable until the normalized kernel 
matrix’s SEEM rises up to a large positive value



Predicting	Q-value	Divergence
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p SEEM	is	able	to	predict	the	order	of	the	growth for	the	estimated	Q-value:
Ø With	SGD	optimizer	(Theorem	4):	The	inverse	of	Q-value	decreases	linearly	

along	the	timestep.



Better	Resolving	Q-value	Divergence

17

The	abnormal	generalization	of	MLP	network:
When	updating	the	value	of	the	point	𝑥" with	cross	mark,		values	of	

points	far	way	𝑥" changes	more	dramatically	than	near	ones.	

This	indicates	an	intriguing	approach	to	avoid	divergence:	regularizing	the	
model’s	generalization	on	out-of-distribution	predictions.



Better	Resolving	Q-value	Divergence
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p How	to	regularize	the	model’s	generalization	on	out-of-distribution	predictions
Ø Simple	Layer	Normalization	(we	theoretically	prove	LayerNorm bounds	SEEM	in	
Proposition	1	and	2)

Add	LayerNorm



Better	Resolving	Q-value	Divergence
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p Avoid	detrimental	bias	mentioned	before



Better	Resolving	Q-value	Divergence
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p Achieve	SOTA	results	on	challenging	Antmaze benchmark	



Better	Resolving	Q-value	Divergence
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p Effectiveness	in	data-scarce	scenarios

The	performance	difference	between	baseline	with	LayerNorm and	without	it	using	the	same	X%	dataset.



Take-home	Message

24

p Q-value	divergence	arises	from	the	improper	neural	network	generalization.

p SEEM	is	a	framework	to	accurately	depict	and	predict	how	improper	
generalization	causes	the	divergence	with	NTK	tool.

p Regularizing	abnormal	generalization	by	LayerNorm
Ø Avoid	detrimental	bias	and	achieve	SOTA
Ø Enable	algorithms	in	data-scarce	scenarios


