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Background: Offline RL %44 (&
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[0 Offline RL:
Rollout data {(s;, a;, s{, 1;)}

Buffer

Data is collected once using
arbitrary policies S O?flin:RL_ o

Data is collected once as a dataset. All algorithms are trained offline without

collecting data again. (like supervised learning)

Figure credits to Levine et al., 2020.
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Background: Extrapolation Error

[0 Fundamental issue in offline RL:

Distributional shift causes cumulative extrapolation errors

Q < r(s,a) + vma}xé)g(s’,a’)
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Introduction: Offline RL Methods
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0 To mitigate extrapolation errors

)« r(s,a) +vmaxQg(s’. a')
Q (7) Y ,Q(vl
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Introduction: Offline RL Methods
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0 Policy constrain / conservative Q is effective but introduce detriment bias
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Introduction: Offline RL Methods

0 Policy constrain / conservative Q is effective but introduce detriment bias
» The trade-off between performance and constraint needs to be balanced

manually for each task.

10 Performance of Antmaze-large-play 0 Estimated Q-value
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Introduction: Offline RL Methods

0 Policy constrain / conservative Q is effective but introduce detriment bias

» The trade-off between performance and constraint needs to be balanced
manually for each task.

» Incapable of dealing with divergence in a data-scarce scenario where OOD

actions are more likely to happen.

800

700 =

600
The performance of popular offline RL |

algorithms with the varying X% S
Mujoco Locomotion dataset

0
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Motivation

O Current methodologies leave several questions unanswered and certain

limitations.

» How does Q-value divergence actually occur?

> How to avoid detrimental bias?



Self-Excite Eigenvalue Measure

[0 Identify self-excitation cycle

Q <+ r(s,a) + ymz}xé)g(s',a')

a

Bellman Update: Update 8 by gradient descent
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Neural Network Generalization:
elevate the target Q-value
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Self-Excite Eigenvalue Measure
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[0 We develop theoretical tools with Neural Tangent Kernel (NTK) to enable
three parts
» Understanding Q-value divergence
» Predicting Q-value divergence

» Better resolving Q-value divergence
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Understanding Q-value Divergence

O (Theorem 1 and 3 in our paper) Q-value divergence happens when the maximal

eigenvalue of the following matrix A; (namely SEEM) is greater to O:

A, = (700, (X}) — ¢6,(X)) ' d0,(X) =1Ge,(X;,X) — Go,(X, X)

Go, (X, X") = ¢pg(X)" g (X') is the NTK matrix depicting the strength of the bond
between X and X' due to generalization, where ¢4 (X): = V5Qgq(X)

Intuition: when the generalization bond between dataset points and OOD points

is excessively strong, the divergence happens.

Tsinghua University g
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Predicting Q-value Divergence

[0 We can monitor SEEM value to know whether the training will diverge.

[0 The divergence indication property of SEEM:

the prediction Q-value is stable until the normalized kernel
matrix’s SEEM rises up to a large positive value

antmaze-medium-play-vO seed 1 antmaze-medium-play-v0O seed 2
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Predicting Q-value Divergence

\\\\\\\

. P T “"h,

Y 4
ol g

",

N~ ‘B ;
g A

Q) 4

Tsinghua University

[0 SEEM is able to predict the order of the growth for the estimated Q-value:

» With SGD optimizer (Theorem 4): The inverse of Q-value decreases linearly

along the timestep.

1/Q v.s. step

0.2
y =-0.00144 *x + 0.87

0.0 R-squared = 1.00000

0 200 400 600
Steps
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Better Resolving Q-value Divergence
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The abnormal generalization of MLP network:
When updating the value of the point x, with cross mark, values of
points far way x, changes more dramatically than near ones.

normalized NTK heatmap w/o LN

0.2

This indicates an intriguing approach to avoid divergence: regularizing the

model’s generalization on out-of-distribution predictions.
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Better Resolving Q-value Divergence
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[0 How to regularize the model’s generalization on out-of-distribution predictions

» Simple Layer Normalization (we theoretically prove LayerNorm bounds SEEM in

Proposition 1 and 2)

Add LayerNorm

/ S

normalized NTK heatmap w/o LN

normalized NTK heatmap with LN
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0.4
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Better Resolving Q-value Divergence
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[ Avoid detrimental bias mentioned before

10

BC coeficient
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Better Resolving Q-value Divergence
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[0 Achieve SOTA results on challenging Antmaze benchmark

Dataset

TD3+BC IQL MSG sfBC diff-QL ours

antmaze-umaze-vQ 40.2 87.5 98.6 933 956(96.0) 94.3+0.5(97.0)
antmaze-umaze-diverse-vQ 58.0 62.2 76.7 86.7 69.5(84.0) 88.5+6.1(95.0)
antmaze-medium-play-v0 0.2 71.2 830 883 0.0(79.8) 85.641.7(92.0)
antmaze-medium-diverse-v( 0.0 70.0 83.0 90.0 6.4 (82.0) 83.9 = 1.6 (90.7)
antmaze-large-play-v0 0.0 396 46.8 63.3 1.6(49.0) 65.4+8.6(74.0)
antmaze-large-diverse-v0 0.0 47.5 582 41.7 44 (61.7) 67.1+1.8(75.7)

average 16.4 63.0 744 772 29.6(75.4) 80.8 (87.4)

20



TEEE

Better Resolving Q-value Divergence

] Effectiveness in data-scarce scenarios

The performance difference between baseline with LayerNorm and without it using the same X% dataset.
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Take-home Message
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[ Q-value divergence arises from the improper neural network generalization.

[0 SEEM is a framework to accurately depict and predict how improper
generalization causes the divergence with NTK tool.

[0 Regularizing abnormal generalization by LayerNorm
» Avoid detrimental bias and achieve SOTA

» Enable algorithms in data-scarce scenarios
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