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Motivation

- RL agents are typically bottlenecked by useful data which they need to
gather themselves

- Recent advances in diffusion generative modelling have shown that
generated synthetic data is a powerful method to boost downstream
performance, e.g. in image classification or robotics [1, 2]

- Proposed solution: upsample agent replay data using a diffusion model!
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Background and Notation

- Reinforcement Learning
- We model the environmentasa MDP M =(S, A, P, R, y)
- Agents train on D={(s;, a;, r;, s{')} in order to learn a policy m(a|s) to maximize
expected return in the environment M

Diffusion Generative Models
- Aclass of models that learn to model a data distribution p(x)
- Learns to iteratively reverse a forward noising process and generate samples
starting from pure noise




Synthetic Experience Replay
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Visualization of the Data Generation Process
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Summary of Proprioceptive Results

Upsampling data using SynthER greatly outperforms explicit data augmentation schemes
for small offline datasets and data-efficient algorithms in online RL without any
algorithmic changes.
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Comparison To Traditional Data Augmentation
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Future Work

- Guided diffusion for targeted data generation

- For example, high TD-error, low-data tasks for multitask settings
- Fine-tuning pretrained diffusion models
- Extensions to different formulations of experience replay

- For example, n-step methods




Please do get in touch
with any questions!

PAPER: HTTPS://OPENREVIEW.NET/FORUM?ID=6JNQI1AY1UF

ALL CODE AVAILABLE AT: HTTPS://GITHUB.COM/CONGLU1997/SYNTHER
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