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e “Program evaluation view of algorithmic accountability”
 Jwo settings

* Encouragement designs
l.e. targeted interventions to improve service delivery

e Algorithmic recommendations

e Contributions:
Modeling using “off-policy learning”, methodology
Applied context:
Targeted service delivery interventions to reduce disparities



Setting 1: Encouragement Designs
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Setting 2: Algorithmic Recommendations
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Algorithmic recommendations need a
“High-risk”, “low-risk”, etc. human in the loop in consequential
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Disparities in ...may not be
recommendations.. disparities in treatment

and outcome
(and vice versa)

~ : :

\_ /

Usual algorithmic auditing focuses on
recommendations only, or assumes recs =
treatment!




Optimal encouragement designs

e Goal: A data-driven optimal decision rule 7z(X)
... recommend treatment
... to optimize population expected utility

... Subject to policy-relevant concerns
(parity in beneficial resources)
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max Elu(xz, T(x), Y(7))]
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Case study: Oregon insurance study
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Figure 1: Distribution of lift in treatment probabilities py1 4 — p1joe = P(T' =1 | R =1,A =
a,X)—PT=1|R=0,A=a,X), and plot of pyj1 4 — P1joq VS- T
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Figure 2: Policy value V(7*), treatment value E[T(7?) | A = a], for A = race, gender.



Case study: Supervised release

e Pretrial risk assessment in criminal justice
R: Recommendation for supervised release
T: Electronic monitoring (EM)

Y: Failure to appear (FTA)
Y(t(r)): does someone FTA when T=t,R=r?

 Causal impact of electronic monitoring (EM) on reducing

failure to appear for court date
Heterogeneity: EM could mean

beneficial services or
burdensome surveillance (paying for EM, losing job)

Exhibit 2: Decision Making Framework
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* “Program evaluation view of algorithmic accountability”

e Contributions: modeling, methodology

Applied context:
Targeted service delivery interventions to reduce

disparities



