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Neural Operators learn mappings between infinite dimensional function spaces.
Their analytical properties, including injectivity and bijectivity, are poorly
understood.

In this work we extend prior work for finite-dimensional networks to the
infinite-dimensional setting. Our work enables applications for

@ Generative models in infinite-dimensional function space
@ PDE-based inverse problems

We show that injective neural operators are universal approximators (Theorem 2)
and, under appropriate assumptions, may be inverted by neural operators
(Theorem 3).
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Neural operator

@ D c R? Lipschitz bounded domain
e L%*(D;R") = L?(D)", L? space of R"-value function on D

Definition 1 (Neural operators [Kovachki et al., 2021])
We define a neural operator G : L?(D)%in — L2(D)deut by
G:=Tpy10Lpo--- L1017y,
Ly : LA(D)Y — L2(D)%*F,  (Low)(z) == oc(We(z)v(z) + Kev(z) + be()),

@ 0 :R — R, non-linear activation operating element-wise

@ W, € C(D;R%¥+1%d¢e) pointwise matrix multiplications,
@ K;:L?(D)% — L?(D)%*! linear integral operators,
@ by € L?(D)%+1, bias functions

Ty : L*(D)%n — L?(D)%, lifting operator

@ Tryq: L?(D)4e+1 — L2(D)%ut, projection operator

v
™ = — — S Ne
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Class of neural operators

We define

NOL(U;Dvdinadout) = {G : LQ(D)dm - LQ(D)dOm
G = KL+10 KL+bL) (K2+b2)OUO(K1—|—b1) (K0+b0),

fH/M )iy

be € LQ(D;Rde+l)a d@ € Ny dO = din) dL+2 = doutv l= 077L+2})

, ke € L*(D x D;R¥+1%d),

and

NOiL"j(U;D,dm,dout) :={G € NOL(0;D,d;in,dout) : G is injective}.
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Universal approximation theorem

Let G : L?(D)%n — L2(D)%ut be continuous such that for all R > 0 there is
M > 0 so that

|G (a) < M, Va € L*(D)%~, lallL2(pyain < R,

22 (Dyons

We assume that either 0 = Leaky ReLU or 0 = ReL.U. Then, for any compact
set K C L*(D)%~, e € (0,1), there exists L € N and G € NOY (5 D, din, dout)
such that

(D)dout =

sup HG+(a) - G(a)HL2 <e.
acK

We don’t have any dimensionality restrictions. In the case of Euclidean spaces
R4, [Puthawala et al., 2022] requires that 2d;, + 1 < d,y: before all continuous
functions G* : R%» — R%ut can be uniformly approximated in compact sets by

injective neural networks.
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Non-linear neural operator

We consider layers of the form

(Lev) (@) = o(We(z)o(x) + Ke(v)(2)), = € D,

where K, is non-linear integral operators

Ko(u)(x) = /D ke, 9, (@), u(y)u(y)dy,

@ Generalization of the attention mechanism in transformers [Kovachki et al.,
2021]
k(x,y,v(x),v(y)) = softmaxo < Av(z), Bv(y) >,

@ Improve performance of integral autoencoders [Ong et al., 2022]
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Construction of the inverse

As simple case, n =1, D C R is a bounded interval. Consider a map
F . LQ(D) — LQ(D) defined by

F(u)(z) = W(2)u(z) + /

D
where W € C1(D;R) satisfies 0 < ¢c; < W (z) < ¢2, k € C3(D x D x R;R) and
IWller @) < <o,

k(z,y,u(y))u(y)dy, v e L*(D),

IEllcs (D Dxry < 05

and for all ug € H*(D), the Fréchet derivative

DFug) : HY(D) — H*(D) is injective.

Assume that F : H'(D) — H'(D) is bijective. Let ¥ C B, (py (0, R)where

a > 0. The inverse of F : HY(D) — HY(D) in Y can be written as a limit of
neural operators having distributional kernels.
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