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Multi-task learning

Task-Specific Modules (A)
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...... e Goal: learn multiple
related tasks
simultaneously

* Benefit: improved
generalization

* Application:

Shared Modules (B)
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autonomous driving
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Multiple Tasks (X)

From https://hazyresearch.stanford.edu/blog/2020-03-01-multi task transfer learning
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Two lines of research

* Linear scalarization

* First choose a fixed set of non-negative weights {)\Z-}ie[k] , then solve the
scalar optimization problem:

0" = arg min Z N L;(0)
« Simple and scalable S

* Specialized multi-task optimizers (SMTOs)
* Dynamic multi-objective optimization
* Goal: finding Pareto-optimal solutions
« MGDA', Gradient Surgery”...

' Désidéri, Jean-Antoine. "Multiple-gradient descent algorithm (MGDA) for multiobjective optimization." Comptes Rendus
Mathematique 350.5-6 (2012): 313-318.
Yu, Tianhe, et al. "Gradient surgery for multi-task learning." Advances in Neural Information Processing Systems 33 (2020): 5824-5836.



Heated debate

In Defense of the Unitary Scalarization
for Deep Multi-Task Lea

Do Current Multi-Task Optimization Methods in
Deep Learning Even Help?
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With proper choices of hyperparameters and regularization techniques,
scalarization matches or even surpasses SMTOs.



Motivation

e Understand linear scalarization on the representation level

* Full-exploration problem:

For every Pareto optimum v, does there exist a set of weights, such that the
optimal solution of the linearly scalarized objective corresponds to v ?
f2

Kl'heorem [ ] When the loss A
functions are convex, linear

scalarization with proper weights
\.can reach every Pareto optimum.)

0.0) : T — > f1 What if the loss functions are non-convex?

ich and [ ] Boyd, Stephen P., and Lieven Vandenberghe. Convex
From Emmerich and Deutz, 2018 optimization. Cambridge university press, 2004.
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Setting

« Two-layer multi-task linear network for regression: for task 7 € k], the
prediction is given by

file, W, a;) = ' Wa,

xr € RP input
W € RP*?  shared layer
a; € RY  task-specific head

e Shared input X € R"*?, target vector y; € R"”, training loss for task ¢ :
Li(W, a;) = [| XWa; — yil



Setting (cont.)

* Over-parametrized regime (¢ > k)

| ] (linear case): The network has sufficient capacity to fit all tasks
perfectly; the Pareto front reduces to a singleton {0} and can be achieved by
linear scalarization with any choices of convex coefficients

* True for general non-linear models (our work)

* Under-parametrized regime (¢ < k, our focus)
* ¢ = 1 --- extremely under-parametrized
* ¢ = k — 1 --- mildly under-parametrized

[ ] Wu, Sen, Hongyang R. Zhang, and Christopher Ré. "Understanding and Improving Information Transfer in Multi-Task
Learning." International Conference on Learning Representations. 2019.



Main results

* Denote §; = X(X " X)TX Ty; as the optimal linear predictor for task :
e |et f/ — [:&1,. .. agk] c R’nxk
* We develop sufficient and necessary conditions for full exploration

"Theorem (¢ = 1): Linear scalarization is capable of fully exploring the
Pareto front, if and only if G := Y TY is doubly non-negative, i.e., the
inner products for all pairs of ¥; and J; are non-negative, up to

\_negating the direction of some ¥;’s.

~
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Theorem (¢ = £ — 1): Linear scalarization is capable of fully exploring

the Pareto front, if and only if @ = G~ is doubly non-negative, up to

knegating the direction of some ¢;’s.
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Key observations

Feasible MSEs restricted Al feasible MSEs 0
to each surface
0
55 MSE,

. 1
union
1
1 MSE;
MSE
2 0 1

0
. Eg, LI s r . By ® intersection (balanced PO)

1 MSE, 0

Multi-surface structure Gradient disagreement



Experiment

® MGDA ® MGDA-UB

0.2

(55, ,21,|.69)

0.4

€3S

0.6 |

Scalarization

SMTOs are capable of finding
balanced solutions, which are not

achievable by linear scalarization



Takeaway

 We demonstrate a representation limitation of linear scalarization: it
is generally not capable of full exploration for linear MTL

* On the empirical side, we reveal the potential of SMTOs in finding
balanced solutions

We hope our work could:

* Foster a balanced development among linear scalarization and SMTOs

* Motivate the research community to develop a better theory
explaining the empirical success of linear scalarization



Paper

Thank you!

Meet us at Great Hall & Hall B1+B2 #1004,
Dec 12t (Tuesday) 5:15 - 7:15 pm!
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