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Difficulties in tensor factorization
■ Model selection is not intuitive.

CP decomp.
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Tucker decomp. Decomp. with tensor networks

+⋯+

Tensor Train decomposion Tensor ring decomposion
𝒫



Difficulties in tensor factorization
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■ Model selection is not intuitive.

CP decomp.

≃ =

𝒫 ത𝒫

■ Optimization is difficult.

≃

Tucker decomp. Decomp. with tensor networks

+⋯+

A convex, stable and intuitive tensor factorization is desired.

minmize 𝒫 − ത𝒫 
𝐹

Non-convex𝒫 − ത𝒫 
𝐹

😢 Solution often might be indeterminate.

😢 The objective function is typically non-convex.
・Initial values dependency

No guarantee to 
be the best solution.

Tensor Train decomposion Tensor ring decomposion
𝒫
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Natural parameter 

of exponential distribution family.

Energy function
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Control relation between 

mode-k and mode-l.
Control relation among 

mode-j, -k and -l.

Natural parameter 

of exponential distribution family.

Energy function
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One-body approx.

Rank-1 approximation
（mean-field approximation）

[NeurIPS 2021 Ghalamkari, K., Sugiyama, M. ]
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One-body approx.

Rank-1 approximation
（mean-field approximation）

[NeurIPS 2021 Ghalamkari, K., Sugiyama, M. ]

Two-body approx.

Control relation between 

mode-k and mode-l.

Larger 

Capability
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One-body approx.

Rank-1 approximation
（mean-field approximation）

[NeurIPS 2021 Ghalamkari, K., Sugiyama, M. ]

Two-body approx.

Two-body

Interaction

Three-body approx.

Larger 

Capability

The global optimal solution      minimizing KL divergence from      can be obtained by a convex optimization.

Intuitive modeling focusing on interactions between modes

Control relation among 

mode-j, -k and -l.

Control relation between 

mode-k and mode-l.

Three-body

Interaction



💡We regard a normalized tensor    as a discrete joint probability distribution whose sample space is an index set

Coordinates

transformation

Theoretical idea behind proposal
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Index is discrete random variable 

𝜽- Representation

Representation with natural parameters 
of exponential family

Geometry of 𝜽-space

Low-rank space
（Not flat）

Flat subspace

Difficult to optimize

We construct flat subspace by focusing 

interaction among tensor modes

Describing tensor factorization in 𝜽-coordinate system makes it convex problem

💡 We use information geometry to formulate factorization as convex problem



Reconstruction for 40×40×3×10 tensor

Larger 

capability

Color 
depends
on image 
index

Color is uniform within each image.

Intuitive model design that captures the relationship between modes

Color depends on pixel

Three-body Approx.
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(width, height, colors, # images)



Rank-free convex nonnegative tensor factorization

・More intuitive design than rank tuning

One-body Approx. Three-body Approx.Two-body Approx.

Many-body Approximation

・Convex optimization always provide unique solution
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