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Difficulties in tensor factorization

Bl Model selection is not intuitive.
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Decomp. with tensor networks

Tensor Train decomposion
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Tensor ring decomposion
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B Optimization is difficult.

@ The objective function is typically non-convex.
- Initial values dependency

@ Solution often might be indeterminate.

=1 Non-convex
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\

No guarantee to
be the best solution.

A convex, stable and intuitive tensor factorization is desired. .




Many-body approximation for non-negative tensors

1 Energy functlon Ok P
Pijk = exp[ Eg(l ik, l)] Z(Pz‘jkl =1
"~ Natural parameter ikl >0iji1
of exponential distribution family. /
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Many-body approximation for non-negative tensors

1 Energy functlon Ok P
Pijk = exp[ “E o(i, 7, k, l)] 2 Piga =1
N~ Natural parameter ijkl >0ijia
1 of exponential distribution family. 4
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Many-body approximation for non-negative tensors

1 _
q)ijkl — Z exp[_EB(i/ j/ k/ l)] ya ‘_')‘P_(?L?l?

1 1 4 12 34 123 234 1234 o
= Zexp[E§)+...+E,()+E§j )+ HEGY +EGP) ++ B + EGY ]

One-body approx.

_ o (1),(2),,3),,(4
Pim = P )P](' 'pp?

Rank-1 approximation
(mean-field approximation)
[NeurlPS 2021 Ghalamkari, K., Sugiyama, M. ]




Many-body approximation for non-negative tensors

1 _
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Control relation between
mode-k and mode-L

One-body approx. Two-body approx.
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P = pOpPpPpY
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Rank-1 approximation
(mean-field approximation)
[NeurlPS 2021 Ghalamkari, K., Sugiyama, M. ] Larger
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Many-body approximation for non-negative tensors

1 .. P
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Control relation between
mode-k and mode-L

Control relation among
mode-j, -k and -L

One-body approx. Two-body approx.

— a(1),,(2)..(3),,(4
P = PpPpdpfY

Three-body app
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Rank-1 approximation Three-body
(mean-field approximation) Interaction
[NeurlPS 2021 Ghalamkari, K., Sugiyama, M. ] Larger
Intuitive modeling focusing on interactions between modes Capability
The global optimal solution 5 minimizing KL divergence from P can be obtained by a convex optimization.




Theoretical idea behind

Index is discrete random variable

____________________________________________

prqk - 1 (i,j,k)’”é:"é (a,1,1), ..., (7], K)

ik
@ We regard a normalized tensor P as a dlscrete joint probability distribution whose sample space is an index set

/ to formulate factorization as convex problem

@ We use information geometr

i Geometry of 8-space 0- Representatlon
Representation with natural parameters
Coordinates of exponential family
(}) transformation
1]k
We construct flat subspace by focusing
interaction among tensor modes
Difficult to optimize
Low-rank space /
(Not flat)
»Pii >0
Flat subspace
ik P Oijk

Describing tensor factorization in 6-coordinate system makes it convex problem 10




Reconstruction for X3 X10 tensor

Color is uniform within each image.
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Intuitive model design that captures the relationship between modes




Rank-free convex nonnegative tensor factorization

Many-body Approximation

I

i J ok
IDIDIPNIZT;

i'=17=1k'=11'=1
1 1 4 12 34 123 234 1234
= —exp|E{V +...+ EfY + E§? +..+ EfY + Ef® +...+ Ejig ) + EG |
One-body Approx. Two-body Approx. Three-body Approx.
<J
OO ® O \ DA</
ORORGRO

- Convex optimization always provide unique solution

* More intuitive design than rank tuning
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