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Introduction

• End-to-end back-propagation requires storing the whole model and computational 
graph during training, which requires large memory consumption.


• It also prohibits training the layers in parallel because of its locking problems:


• Forward locking: each layer must wait for the previous layers to process its input.


• Update locking: each layer must wait for the end of the forward pass to be updated.


• Backward locking: each layer must wait for errors to back-propagate from the last 
layer to be updated.



Introduction
• Module-wise training splits the network into successive modules, a module being made up of one or more layers. Each 

module takes as input the output of the previous module.


• Each module has an auxiliary classifier so that a local loss can be computed, with back-propagation happening only inside 
the modules and not between them.



Introduction

• Module-wise training consumes less memory than end-to-end training as it 
stores less activations.


• It has therefore been used in constrained setting for training on mobile 
devices and dealing with very large whole slide images.


• It also solves update locking (and therefore also backward locking). When 
combined with batch buffers, module-wise training solves all three problems 
and allows parallel training of the modules.


• Despite its simplicity, it outperforms more complicated approaches to solve 
the locking problems such as delayed or synthetic gradients.



Introduction
• Module-wise training suffers however from a stagnation problem, whereby early modules overfit 

and learn more discriminative features than end-to-end training, destroying task-relevant 
information, and deeper modules don't improve the test accuracy significantly, or even degrade it.

Linear separability (left), mutual information with input (center), and with output (right) of the features at different depths learned with module-wise training with K modules. 
The experiment is training a ResNet-32 on CIFAR10. K=1 is end-to-end training. K=2 means training two modules with 16 blocks each. From [13].



Introduction

• To tackle this issue, InfoPro [13] propose to maximize the mutual information that 
each module keeps with the input, in addition to minimizing the loss, while Sedona 
[12] make the first module deeper. 


• Most methods add a second auxiliary network besides the classifier to each module 
to compute a second term, which limits the memory savings of module-wise training.


• We use the transport regularization from the previous section to regularize the 
modules, and do not need to implement another auxiliary network.


• We show that the regularization makes every module act as proximal optimization 
step in the Wasserstein distance for maximizing the separability of the data 
embedding, therefore explaining why it avoids the stagnation or collapse in accuracy.



Method

• We denote the modules  and the classifiers , 


•  is the composition of all the modules until depth  for , and .


• The typical setting of module-wise training for minimizing a loss , is, given a dataset , to solve 
one after the other, for :
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• The final network trained this way is , but we can stop and use  for  
if it performs better.
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Vanilla module-wise training



Method
Transport-regularized module-wise training

• We add the kinetic energy to the loss in the target of problems (1)  
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Method
Theoretical results

• Consider the Wasserstein space , i.e. the space of probability densities over  equipped with the Wasserstein 
distance .


• Definition. Given  the minimizing movement scheme is a discretized gradient flow that is well-defined in metric 
spaces and minimizes under some conditions  starting from . It is given by
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• Proposition. The distributions  where functions  are found by solving problems (3) coincide with the minimizing 
movement scheme (4) for .


• In other terms, we are following the minimizing movement scheme which is a discrete optimisation algorithm for following the gradient 
flow of functionals on probability distributions, and which converges under some conditions to a solution as  and .


• In other terms, this can be seen as taking Wasserstein proximal steps to minimize , which is the property we want in module-wise 
training (modules building upon each other to minimize the loss).
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Method
Theoretical results

• We also show existence and regularity results for the modules solving problems (3).


• Theorem. Problem (3) has a minimizer  such that  is an optimal transport map. And for any minimizer 
,  is an optimal transport map.


• Corollary.  is -Hölder continuous a.e. and if the optimization algorithm returns an approximate solution pair  
such that  is an -optimal transport map, i.e. , then for almost every  and a constant 

, we have
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Method
Multi-block modules

• For simplicity, we presented in (2) the case where each module is a single residual block. However, 
in practice, we often split the network into modules that contain many residual blocks each.


• If each module  is made up of  residual blocks, and we denote  the position of a point  
after  blocks, then regularizing the kinetic energy of multi-block modules means solving
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Method
Multi-block modules

• Problems (4) are the discretization of
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• We recognize in the second term in the target of (5) the optimal transport 
problem in its dynamical form.


• Therefore the previous theoretical results still apply.



Method
Varying the regularization weight

• The theoretical discussion in suggests taking  as small as possible. However, instead of using a fixed , we might want to vary 
it along the depth  to further constrain with a smaller  the earlier modules to avoid that they overfit or the later modules to 
maintain the accuracy of earlier modules.


• We might also want to regularize the networks further in earlier epochs when the data is more entangled as in the previous 
section. 


• To unify and formalize this varying weight  across modules  and SGD iterations , we use a scheme inspired by the method 
of multipliers as in the previous section.


• We instead consider the weight  given to the loss. We denote  the parameters of both  and  at SGD iteration 
. We denote  and  respectively the loss and the transport cost as functions of parameters  and data . 

τ τ
k τk

τk,i k i

λk,i = 2τk,i θk,i Tk Fk
i L(θ, x) C(θ, x) θ x

{
θk,i+1 = θk,i − ηi ∇θ(λk,i L(θk,i, xi) + C(θk,i, xi))
λk,i+1 = λk,i + hL(θk,i+1, xi+1) if i mod s = 0 else λk,i



Method

• The weights  will vary along modules  even if we use the same initial weights 
because they will evolve differently with iterations  for each . They will increase more slowly 
with  for larger  because deeper modules will have smaller loss. 


• We use the same initial value  for all modules so this method requires choosing three 
hyper-parameters ( ,  and ). 


• In practice, it works best in only one experiment. Its dynamics suggest manually finding a value 
of  for the first half of the modules and multiplying it by 2 for the second half, which works best 
in all the other experiments.
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Varying the regularization weight



Method
Solving the module-wise problems

• The module-wise problems can be solved in one of two ways. One can completely train each module with its auxiliary 
classifier for  epochs before training the next module, which receives as input the output of the previous frozen trained 
module. We call this sequential module-wise training. 


• We can also do this batch-wise, i.e. do a complete forward pass on each batch but without a full backward pass, rather a 
backward pass that only updates the current module  and its auxiliary classifier , meaning that  forwards its output to 

 immediately after it computes it. We call this parallel module-wise training. 


• Combining it with batch buffers solves all locking problems and allows a linear training parallelization in the depth [14]. 


• We propose a variant of sequential module-wise training that we call multi-lap sequential module-wise training, in which 
instead of training each module for  epochs, we train each module from the first to the last sequentially for  epochs, 
then go back and train from the first module to the last for  epochs again, and we do this for  laps. 


• For the same total number of epochs and time, and the same advantages (loading one module at a time) this provides a non-
negligible improvement in accuracy over normal sequential module-wise training in many cases. 


• Despite our theoretical framework being that of sequential module-wise training, our method improves the test accuracy of 
all three module-wise training regimes. 
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Experiments
• We focus first on parallel module-wise training as it performs better and has been more explored in recent works.


• The methods we compare to are:


• InfoPro and its variant InfoProL, which maximize the mutual information each module keeps with the input, therefore 
requiring an additional auxiliary layer besides the classifier.


• Sedona, which uses an architecture search phase to decide where to split the network into modules and which auxiliary 
classifier to use. This leads to larger early modules, reducing the memory savings of module-wise training.


• DGL, which only focuses on the architecture of the auxiliary classifier, and whose auxiliary classifier we use.


• PredSim, which adds a similarity matching loss to the loss of every module, also requiring an additional auxiliary layer.


• DDG and FR, which are delayed gradient methods that aim to break the locking problems for parallelization and not for 
saving memory.


• We call our method TRGL for transport-regularized greedy learning and include the results of vanilla module-wise training 
without the regularization (called VanGL) for ablation study purposes.


• We have better test accuracy than the other methods, and except on Transformers, than end-to-end training, with as much 
as 60% less memory usage.


• We then run experiments on sequential module-wise training with each module being a single residual block, which allows 
for the largest memory savings, as only one block and its classifier have to be loaded at a time.



Experiments
Parallel module-wise training

Accuracy of vanilla and transport regularized module-wise training with 4 modules, and memory savings compared to end-to-end training in red.



Experiments
Parallel module-wise training

Accuracy of vanilla and transport regularized module-wise training with 4 modules, and memory savings compared to end-to-end training in red.



Experiments
Parallel module-wise training

Accuracy of vanilla and transport regularized module-wise training with K modules



Experiments
Memory savings

Memory savings of module-wise training on STL10 as a percentage of end-to-end training

• As seen above, parallel TRGL is lighter than end-to-end training by up to almost 60%. The extra memory consumed 
by our regularization compared to parallel VanGL is between 2 and 13% of end-to-end memory. Memory savings 
depend then mainly on the size of the auxiliary classifier, which can easily be adjusted.


• So far, the modules were of equal depth, which makes the first module the heaviest. Dividing the network into 
modules that weight the same leads to much larger memory savings, and a performance that is still better than end-
to-end training when using 4 modules.



Experiments
Sequential block-wise training

Accuracy of 10-1 ResNet with sequential, MLS and parallel TRGL on CIFAR100



Experiments
Avoiding early overfitting

Accuracy of each module after parallel module-wise training of a ResNet-110 with 16 modules on STL10



Experiments
Avoiding early overfitting

Accuracy of each module after sequential block-wise training of a 10-block ResNet on 2% of CIFAR10



Conclusion

• We introduced a transport regularization for module-wise training that 
theoretically links it to gradient flows of the loss in distribution space. 


• Our method provably leads to more regular modules and experimentally 
consistently improves the test accuracy of module-wise and block-wise 
sequential, parallel and multi-lap sequential (a variant of sequential training 
that we introduce) training.


• For future work, one can ask how far the obtained composition network  is 
from being an optimal transport map itself, which could provide a better 
stability bound than the one obtained by naively chaining the stability bounds 
that follow from each module  being an optimal transport map.

GK
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