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Problem Statement

% PAC Learning: For a function f: R%—{0, 1}, given m samples (x, f(x)) where x ~ D, find a
hypothesis h s.t. Pr__ [1(x)#f(x)] < € w.p. 1 - . Efficient if m < O(poly(d,1/g, log(1/))).
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PAC Learning: For a function f: R4—{0, 1}, given m samples (x, f(x)) where x ~ D, find a
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> LTFs are efficiently PAC learnable to arbitrary accuracy

LLP Hardness [Saket 21, 22]: Given a set of bags of size < q, s.t. 3 LTF consistent with
all bags, NP-hard to find any LTF consistent with > (1/q + o(1))-fraction of the bags.

Question: What happens for natural/well-behaved distributions?

Bag Oracle for LTF f, D = N(u, ) and fixed q, k :- Ex(f,D, q, k)
> Samples bag with k feature-vecs. from D|f(x)=1 and gq-k from DI|f(x)=0.



Qur Results

f(x) :=1{rTx > 0}
f(x):=1{t"x > 0}

0 (418(2) (2=)'¢')

Homogeneous LTF Homogeneous LTF Non-Homogeneous LTF
Standard Gaussian Centered Gaussian General Gaussian
k+#q/2 Vke{l,...,q—1} Vke{l,...,q—1}
D := N(0,I) D:=N(0,X) D := N(u, X)

f(x) :=1{r]x +c. >0}
f(x):=1{#'x+¢ >0}
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d <+ dimension of the feature-vectors,

Amax < maximum eigenvalue of 3,

= —(co+rlp) /| r 5
Amin < minimum eigenvalue of 3




Normal Estimation

% Observation: Sampling a pair of
feature vectors from a bag
> (x, X,) independently u.a.r:
Prlf(x,) # f(x,)] = 2k(g-k)/q?
> (z, z,) pair u.a.r w/o replacement:
Prlf(z,) # f(z,)] = 2k(g-k)/q(q-1)

Theorem: p(r) := Var [r" (z1 — z2)] /Var [rT (x1 — x2)]
is maximized when r = +r,.
Proof Sketch: Case D = N(0,I) and k = g/2. For any r € S¢!

(1 ifr'r, =0, i.e. r lies on the LTF,
1+ qul (%) ifr = +r,, i.e. ris aligned
p(r) = < with the normal to the LTF,

1+ qul (2) cos?@ ifr'r, =cosb, i.e. the angle

™

. between r and r, is 6.

Var[r'(z,

Var{r'(x,
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Homogeneous LTF with N(O, Z)

% Let X, = E[(x,-x,)(x,-x,)1 and £ = El(z,-2,)(z,-2,)"]

< Objective: argmax, . _r'Z r/r's r = X "PrincipalEigenVector(Z "z ¥ ")

lIrll=1
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Stability Theorem: The ratio maximization computed with high probability
approximations of Z; and Z | is close to the normal with high probability.
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> An algorithm to find a high probability estimator of c, given a high probability
estimator of r,
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Stability Theorem: The ratio maximization computed with high probability
approximations of Z; and Z | is close to the normal with high probability.

Geometric bound — Bound on sample error

> An algorithm to find a high probability estimator of c, given a high probability
estimator of r,

Bound on sample error — Bound on Generalization error
> Generalization Error Bound

Sub-gaussian concentration bounds for thresholded Gaussians.
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