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Success of current single-cell analysis
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Single-cell analysis enters the
multiomics age

A rapidly growing collection of software tools is helping researchers to analyse multiple
huge ‘-omics’ data sets.
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Problem of multi-omics integration with cells

1. The vast data volume in atlas-level studies challenges high-performance
computing.

2. Data from different omics pose their own challenges (mixture of cells, or
problematic matching relation).

3. Batch effects may adversely impact analysis results by introducing noise.

d
% @ Each spots contains different number of cells.
7 Batch effect/data quality may affect the downstream analysis.
O Peaks and genes are not perfectly

) matched.
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UMAP 2

Definition of gene embeddings

For multimodal biological datasets D = ({V;, Ei})iTzl, our goal is to construct
a model M( -, 8), designed to yield gene embeddings set € = {eq, ...,er} =
M(D, 8). We intend to harmonize gene information from diverse modalities.
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Overview of MuSe-GNN
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We introduce Multimodal Similarity Learning Graph Neural Network (MuSe-GNN), to learn gene
representations across different modalities/biomedical contexts.

3—

MuSe-GNN = Cross-graph Transformer + Weighted Similarity Learning + Contrastive Learning.

Our model efficiently produces unified gene representations for the analysis of gene
functions, tissue functions, diseases, and species evolution.



Overview of MuSe-GNN

Gene2vec

b MuSe-GNN

UMAP 2

We leveraged 82 training datasets from 10 tissues, offering gene representations containing

functional similarity across different contexts in a joint space.
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MuSe-GNN outperforms SOTA methods in gene representation learning by up to 97.5%.
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Overview of MuSe-GNN

Embeddings of common genes Embeddings of co-expressed genes
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Weighted-similarity learning
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Results: Benchmarking analysis

We evaluate the gene embeddings for different tissues based on six
metrics defined by ourselves.

Table 1: Avg Score across different tissues. Standard deviations are reported in Appendix [E.3.

Methods Heart Lung Liver Kidney Thymus  Spleen  Pancreas  Cerebrum  Cerebellum  PBMC
PCA 0.52 0.48 0.56 0.47 0.56 0.60 0.51 0.62 0.53 0.51
Gene2vec 0.40 0.37 0.33 0.29 0.21 0.31 0.24 0.27 0.31 0.19
GIANT 0.50 0.40 0.33 0.38 0.58 0.33 0.56 0.29 0.28 0.28
WSMAE 0.50 0.47 0.54 0.46 0.57 0.53 0.52 0.55 0.59 0.50
GAE 0.61 0.45 0.58 0.40 0.56 0.58 0.52 0.56 0.60 0.54
VGAE 0.64 0.32 0.33 0.38 0.56 0.31 0.33 0.41 0.33 0.47
MAE 0.36 0.47 0.50 0.45 0.41 0.52 0.39 0.50 0.49 0.50
scBERT 0.41 0.49 0.55 0.62 0.17 0.58 0.46 0.60 0.61 0.58

MuSeGNN 0.77 0.96 0.92 0.89 0.89 0.94 0.80 0.95 0.90 0.92




Results: Multi-omics gene embeddings

Tissues
a Immunology Newou§,/’ N
. \
syslem systent .

o hN

i~
v i
Cardiovascular ~
system-

——Pre-epigenetics

group

spatial_cerebrum
scatac_cerebrum
scrna_cerebrum
scatac_ceregg“um
scrna_cerebellum
scatac_spleen
scrna_spleen
scatac_pancreas
scrna_pancreas
scma_pbmc
scatag_[ mus —
SCIT: us =
scatac%ﬂ-\'rer
scrna_liver

|

cerebellum
cerebrum

heart
kidney
liver
lung

pancreas
pbmcHealthy

spleen
thymus

I

|

scrna_luni

spatial_hea
scatac_heart
scrna_heart

scatac_kidne'
scma{ igne
scatac_|un

Omics

® scatac
® scrna
® spatial

e

defense response

immune system process

response to stress

immune response

inflammatory response

GO enrichment analysis

Function groups

count

®

-In(FDR)

0.125 0.150

0.175
Enrichment

0.200

0.225




Results: Multi-species gene embeddings

a Tissues b Species
al. cerebellum
@ cerebrum
® heart
o~ b Igdney ~ ® human
o e liver o
: ® lung E e lemur
% = ® mouse
@ pancreas
® pbmcHealthy
® spleen
e thymus
C group L Sl d
anatomical structure development: @
- In(FDR)
system development [ ] "
44
42
developmental process: @ P
multicellular organism development ® count
® 200
mouse . . bl h”
lemur anatomical structure morphogenesis ] : o
@ s
circulatory system development .
human

0.18 0.20 0.22 0.24 0.26




Results: Gene embeddings for disease analysis

« COVIDC1A
»COVIDC1B
« COVID C2
* COVID C3
« COVID C4
* COVID C5
& » COVID C6 & e scrna_pbmcCOVID
g * COVID C7 g » scrna_pbmcHealth
= ® Health H1 =
Health H2
Health H3
Health H4
Health H5
Health H6 T
a:g'
UMAP1 UMAPL UMAPL
Adaptive immune response ® CP: NAD Signaling Pathway /) B /\clin Pencieas Signaling Palfiway Dematological Diseases I ——————————
-In(FDR) —PARP16 .
. { l; Developmental Disorder
immune response - 2, . .
P - :z: Es S Hereditary Disorder —
100 ' Kinase N logical Di
immunoglobulin production- e @ o eurological Disease
ERN1___EIF2AKS i i inj iti |
Count : xh_ﬁ_a — Rolationship Organismal injury and Abnomalities
mediator of immune response - o : gg \ / H_""“RH Reproductive System Disease I
/ p— - . .
~ - I
_ N : gg \ xf ©P* Endoplasmic Reticulum Stress Pathiway RNA Post-Transcriptional Modification
phagocytosis, recognition *| @90 \\\ / Auditory Disease m———
& 100 \/
4
immune system process - @ ‘./ 0 2 4 6 8
CP: Unfolded protein response —ll’l(p-Val Ue)
0.2 0.6

0.4
Enrichment



Results:

Gene embeddings for gene function prediction

Table 2: Accuracy for dosage-sensitivity prediction

MuSe-GNN (unsup) Geneformer (sup) Raw

Accuracy 0.77+0.01 0.74+0.06 0.75%0.01

Predict whether genes are TFs or not

AVE
Pancreas
Cerebrum
Cerebellum
Spleen
PBMC
Thymus
Liver

Kidney

£
&

Heart

o
B
o
®
=}
&
o
&8
o
o
o
5]
=
b3
o
&
o
&

EPCA ERaw HE MuSe-GNN

Figure 20: Accuracy for Gene-TF prediction across different tissues.



Discussion & Conclusion

1. GNN + MMML = MuSe-GNN

2. MuSe-GNN outperforms current gene embedding learning models across
different metrics and can effectively learn the functional similarity of genes
across tissues and techniques.

3. The gene representations learned by MuSe-GNN are highly versatile and
can be applied to different analysis frameworks.

4. In the future, we plan to explore more efficient approaches for training and
extend MuSe-GNN to handle a broader range of multimodal biological data.
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