Regu\drized Composi+e Rel U-
ReHU Loss Minimization with Linear

Compu’raﬁon and Linear Convergence

Ben Dai1, Yixuan Qiu?

Equal Contribution

1 Chinese University of Hong Kong (CUHK), 2 Shanghai University of Finance and Economics

-9 .r‘\..'é;.'c‘l
3* " NEURAL INFORMATION
% , PROCESSING SYSTEMS

RAcH

Motivation

Empirical risk minimization
(ERM) is a fundamental

framework in machine learning

Many different loss functions
Efficient solvers exist for
specific problems

E.g., Liblinear for hinge loss
SVM

ion

Loss Funct

Loss

Hinge

Squared Hinge
— Smoothed Hinge
— Huber

Check

Motivation

e Can we develop optimization
algorithms for general ERM
loss functions?

e Can we achieve provable fast
convergence rates?

e Can we transfer the empirical
success of Liblinear to general
ERM problems?

Loss Function

w
1

N
1

Loss

Hinge

Squared Hinge
— Smoothed Hinge
— Huber

Check

Model

In this paper, we consider a general regularized ERM based on a
convex PLQ loss with linear constraints:

mingcpe Y5, Li(x]B8) + 1 1Bl13, s.t.AB+b>0,

e L;(-) > 0isthe proposed composite ReLU-ReHU loss.
e x; € R%is the feature vector for the i-th observation.
e A € REX4andb € RX arelinear inequality constraints for .

e We focus on working with a large-scale dataset, where the
dimension of the coefficient vector and the total number of
constraints are comparatively much smaller than the

sample sizes, thatis,d < nand K < n.

Composite RelLU-ReHU Loss

Definition 1 (Dai and Qiu. 2023). A function L(z) is composite
ReLU-ReHU, if there existu,v € RF and 7, s, t € R such that

L(z) =7 ReLU(wz 4 v) + 35, ReHU,, (snz + t3)

where ReLU(z) = max{z,0},and ReHU,, (2) is defined below.

Composite RelLU-ReHU Loss

Definition 1 (Dai and Qiu. 2023). A function L(z) is composite
ReLU-ReHU, if there existu,v € RF and 7, s, t € R such that

L(z) =7 ReLU(wz 4 v) + 35, ReHU,, (snz + t3)

where ReLU(z) = max{z,0},and ReHU,, (2) is defined below.

5] — RelU
ReHU-1
1ol === ReHU-2 S
R4
——- ReHU-3 i
o| ReQU/ReHU-e &
0, 2 <0 ;
ReHU.(z) = { 2%/2, 0<z<T *
T(z—7/2), z>T N
2_
0_

Composite RelLU-ReHU Loss

Theorem 1 (Dai and Qiu. 2023). A loss function L : R — R~ is
convex PLQ if and only if it is composite ReLU-ReHU.

Table 2: Some widely used composite ReLU-ReHU losses as in . Here SVM 1s weighted SVMs
based on the hinge loss [7], sSVM is smoothed SVMs based on the smoothed hinge loss [33], SVM?
1s weighted squared SVMs based on the squared hinge loss |7], LAD is the least absolute deviation
regression, SVR is support vector regression with the e-insensitive loss [44], and QR 1is quantile
regression with the check loss [26].

PROBLEM LOSS (L;(z;)) CoMPOSITE RELU-REHU PARAMETERS

SVM ci(l —yizi)+ Ui = —CilYi, V1 = C;

sSVM c;ReHU (—(yizi — 1)) s1: = —/CiVi. t1i = /¢, T = /¢

SVM? ci((1—yizi)4)? S1i = —V/2¢iYi, Ly = V2¢, T = 00

LAD cilyi — i ULy = C4, V1§ = —CilYs, U2 = —C4, V2i = Cili

SVR ci(lyi — zi| —€)+ Ui = ¢, V1 = —(Yi +€), Ugi = —Cj, Vo = Y; — €

QR Cins(yz‘ - Zz) Uy = —CR, V15 = RCY4, U2y = Ci(l - fi), Vo; = _Ci(l - ﬁ?)yi

Composite RelLU-ReHU Loss

Table 2: Some widely used composite ReLU-ReHU losses as in . Here SVM 1s weighted SVMs
based on the hinge loss [7], sSSVM is smoothed SVMs based on the smoothed hinge loss [33], SVM?
is weighted squared SVMs based on the squared hinge loss [7], LAD is the least absolute deviation
regression, SVR is support vector regression with the e-insensitive loss [44], and QR is quantile

regression with the check loss [26].

PROBLEM LOSS (L;(2;)) COMPOSITE RELU-REHU PARAMETERS

SVM ci(1 —yizi) ¢ Uy = —CilYs, V13 = €

sSVM c;ReHU; (—(yizi — 1)) s1: = —/Ci¥Vi tii = /G, T = /i

SVM? ci (1 —y;2:)4)? S1; = —/2¢;y;, t1; = \/2¢;, T = 00

LAD cilyi — zil Ul = Ci, Vi = —C;iYi, U2i = —Ci, V2; = Ci¥Y;

SVR ci(lyi — zil —€) 4 U1y = Ci, V1 = —(Yi +€), Ugg = —C4, V2; = Yi — €

QR Cipr(Yi — 2i) Uy = —CiK, V1; = KCiYs, Ui = ¢i(1 — K), v2; = —¢i(1 — K)y;

ReHLine applies to any convex piecewise linear-quadratic loss
function (potential for non-smoothness included), including
the hinge loss, the check loss, the Huber loss, etc.

Main Results

Table 1: Overview of existing algorithms for solving . Column COMPLEXITY (PER ITERATION)
shows the computational complexity of the algorithm per iteration. Here, we focus only on the order
of n since d < n is assumed in our setting. Column #ITERATIONS shows the number of iterations
needed to achieve an accuracy of ¢ to the minimizer.

ALGORITHM COMPLEXITY #ITERATIONS COMPLEXITY
(PER ITERATION) (TOTAL)
P-GD O(n) O~ 1) [6] O(ne™t)
CD O(n?) O(log(e~1)) [31] O(n?log(s1)
IPM O(n?) O(log(s~1)) [18] O(n?log(e™1)
ADMM O(n?) o(e~1) [91120] o(n?e1)
SDCA O(n) O(e-1) [39] O(ne 1)
ReHLine (ours) O(n) O(log(s~ 1)) O(nlog(e 1))
ReHLine has a provable convergence rate. The per-

iteration computational complexity is in the sample size.

ReHLine

e Inspired by Coordinate Descent (CD) and Liblinear

Theorem 2. The Lagrangian dual problem of (6) is:

(E, A.T) = argmin L(&,A,T)
EAT

st. §20, E>A>0, t>T2>0, (7)
1 1 — 1 -
L(EAT) = EéTAATﬁ + ivec(A)TUEﬂU(g)vec(A) + §vec(I‘)T (S(T;.;)S(g) + I)vec(T)
— ETAU3)vec(A) — ETAg(g)vec(I‘) + vec(A)TU-{g)g(;ﬂvec(I‘)
4+ €Tb — Tr(AVT) — Ty(I'TT), 8)

where £ € RE, A = (\;) € REX™, and T' = (v,;) € RE*™ are dual variables, L_l(;;) e R¥xnL gnd

S(3) € R are the mode-3 unfolding of the tensors U = (u;;;) € RE*"*% qnd S = (s1,;5) €
RHxnxd respectively, wj;j = W;Tij, Shij = ShiTij, 1is the identity matrix, and all inequalities are
elementwise.

Moreover, the optimal point 3 of (6) can be recovered as:

T
-~

K L H
B = Z Srak — Z X; (Ariuz; + Z ;}’\h-r.sh,i) = AT¢ — Uggyvec(A) — Sggyvec(T). (9)
k=1 1 h=1

1=1 =

The linear relationship between primal and dual variables
greatly simplifies the computation of CD.

ReHLine

Canonical CD updates. As a first step, we consider the canonical CD update rule that directly
optimizes the dual problem (7) with respect to a single variable. For brevity, in this section we only
illustrate the result for \;; variables, and the full details are given in Appendix

By excluding the terms unrelated to);;, we have A} = argming ., < £;()), where

K
1
Lii(A) = §ul2i(x;‘rxi)>‘2 + D A (xIx)A =Y Gui(alxi) A
V)200) P

+ E Ui Yh'ir SheirX] Xt A — U A
Wi

Therefore, by simple calculations we obtain

K
Ulixg (Zk:l gkralc - Z(l/yi/)?g(l’i) /\l’i’ul’i’xi’ - Zh’,i’ ’Yh’i’sh’i'xi’) + vl

Al =P, ;
(10)
where Py, p) () = max(a, min(b, 2)) means projecting a real number x to the interval [a, b].

Clearly, assuming the values x| a;, and ||x; ||§ are cached, updating one \;; value requires O (K +nd+
nL +nH) of computation, and updating the whole A matrix requires O(nL(K + nd+nL + nH)).
Adding all variables together, the canonical CD update rule for one full cycle has a computational
complexity of O ((K +nd + nL + nH)(K +nL +nH)).

11

ReHLine

Canonical CD updates. As a first step, we consider the canonical CD update rule that directly
optimizes the dual problem (7) with respect to a single variable. For brevity, in this section we only
illustrate the result for \;; variables, and the full details are given in Appendix|[B]

By excluding the terms unrelated to);;, we have A} = argming ., < £;()), where

K
1
Lii(A) = §ul2i(x;‘rxi)>‘2 + D A (xIx)A =Y Gui(alxi) A
V)200) P

+ E Ui Yh'ir SheirX] Xt A — U A
Wi

Therefore, by simple calculations we obtain

K
Ulixg (Zk:l fkak - Z(l/yi/)?g(l’i) /\l’i’ul’i’xi’ - Zh’,i’ ’Yh’i’sh’i'xi’) + vl

ALY =P

)

(10)
where Py, p) () = max(a, min(b, 2)) means projecting a real number x to the interval [a, b].

Clearly, assuming the values x| a;, and ||x; ||§ are cached, updating one \;; value requires O (K +nd+
nL +nH) of computation, and updating the whole A matrix requires O(nL(K + nd+nL + nH)).

Adding all variables together, the canonical CD update rule for one full cycle has a computational
complexity offlO((K + nd + nL + nH)(K + nL + nH))|

n L H

=1 1= 1 h=1

K
B=Y &ar— Y x| > Nitui+ Y Anisni | = ATE — Uggyvec(A) — Sz vec(
K —1 1=

~

T).

)

12

ReHLine

Canonical CD updates. As a first step, we consider the canonical CD update rule that directly
optimizes the dual problem (7) with respect to a single variable. For brevity, in this section we only
illustrate the result for \;; variables, and the full details are given in Appendix|[B]

By excluding the terms unrelated to);;, we have AJ*" = argming ., < £;()), where

K
Lo 2 — _
Lu(A) = §uli(x{ X;)A" + Z ity (X[%)\ - ReHLine updates. The proposed ReHLine algorithm, on the other hand, significantly reduces the
W)# 1) computational complexity of canonical CD by updating 3 according to the KKT condition (9) after
+ Z UiYhrir Shiir XX X — VA each update of a dual variable. To see this, let p := (£, A, T') denote all the dual variables, and define
ke K n L H
Therefore, by simple calculations we obtain IB(l’l’) = Z rag — Z X; (Z Aiug + Z ’Yhishi> .
k=1 i=1 1=1 h=1
ne wix] (Sk Gk = g ey M X = 3 . .
MY = Plog AT Then it can be proved that (VL;;)(A;;) = — (uux] B(p) + vy;). Therefore, when g is fixed at
T pfld = (g2 A 1o) and let B = B('), (10) can be rewritten as
where Py,) (r) = max(a, min(b, v)) means projecting a real number e _p \old_ (Va, £)(A°1) _p Al ulixgﬂold + oo
Clearly, assuming the values x] aj, and ||x;||3 are cached, updating one . bl 0,1) \ Aii uZ||x; |3 [0,1] | i uZ||x; |3

nL +nH) of computation, and updating the whole A matrix requires (

Adding all variables together, the canonical CD update rule for one f Accordingly, the primal variable 3 is updated as

complexity offlO((K + nd + nL + nH)(K + nL + nH))| u

Ignew — ﬂo _ ()\?iew _ A?ild)ulixiy

which can then be used for the next dual variable update. Simple calculations show that this scheme
only costf computation for one \;; variable.

n L H

K
6= ngak - in Z Aty + Zﬁhishi =AT¢ — U(g)V@C(A) — g(g)vec(I‘). 9)
k i=1 1=

=1 1= 1 h=1

13

Table 5: The averaged running times (&£ standard deviation) of SOTA solvers on machine learning
tasks. “X” indicates cases where the solver produced an invalid solution or exceeded the allotted time
limit. Speed-up refers to the speed-up in the averaged running time (on the largest dataset) achieved
by ReHLine, where “co” indicates that the solver fails to solve the problem.

TASK DATASET ECOS MOSEK SCS DCCP REHLINE
! FairSVM SPF (x1e-4) X X X X 4.25(£0.5)
X e r | I I | e n S Philippine (x le-2) 1550(+0.6) 87.4(£0.2) 130(£42) 1137(£9.2) 1.03(:0.2)
Sylva-prior (x1e-2) X X X X 0.47(+0.1)
Creditcard (xle-1) 175(:02) 64.2(£0.1) 161(405) X 0.64(£0.2)
Fail/Succeed 2/2 2/2 2/2 3/1 0/4
SOftwa re generiC/ Speed-up (on Creditcard) 273x 100x 252x 00 -
o o TASK DATASET ECOS MOSEK SCS REHLINE
specialized software ElssticQR LD (x1e-) X 106(£7) 34.9(25.0) 2.60(x030)
Kin8nm (x le-3) X 92.0(£1.0) 63.1(£58.5) 4.12(+0.95)
House-8L (x1e-3) 887(£161) 277(+34) X 7.21(£1.99)
Topo-2-1 (xle-2) 4752(+2015) X X 3.04(£0.49)
BT (x1e-0 7079(4+2517 X X 2.49(+0.56
® CVX/CcvXpy (x1e0 2517 (0,56
Fail/Succeed 312 213 312 0/5
Speed-up (on BT) 2843x 00 00 -
e mosek (IPM)
TASK DATASET ECOS MOSEK scs HQREG REHLINE
[J () RidgeHuber Liver-disorders (x le-4) X X X 4.90(£0.00) 1.40(40.20)
ecos I P M Kin8nm (x le-3) X X X 1.58(£0.21) 2.04(+0.30)
House-8L (x le-3) X 925(+2) X 2.42(+£0.34) 0.80(0.21)
® SCS (AD M M) Topo-2-1 (x1e-2) 2620(+£1040) 267(+1) 213(#2) 3.53(+0.67) 1.78(+0.32)
BT (xle-1) X 2384(+433) X 125(£1.8) 5.28(+1.31)
Fail/Succeed 4/1 2/3 41 0/5 0/5
® dCCp (DC P) Speed-up (on BT) 00 452x 00 2.37x -
HNH TASK DATASET ECOS MOSEK scs LIBLINEAR REHLINE
[->
I I bl In€ar SV M SVM SPF (xle-4) X 372(+1) 237(£27) 12.7(:0.1) 3.90(0.10)
h b Philippine (x 1e-2) 1653(+41) 86.5(£0.2) 153(£146) 1.80(:0.02) 0.82(0.02)
PY - Sylva-prior (x le-3) X T31(+£2) 843(£1006) 16.0(:£0.6) 4.08(0.84)
qreg > H uper Creditcard (x1e-2) 2111(£804) X 1731(£4510) 23.1(+£2.5) 5.08(+1.45)
. . Fail/Succeed 202 1/3 0/4 0/4 0/4
L ||ghtn N g -> SSVM Speed-up (on Creditcard) 415 o0 340x 4.5x -
TASK DATASET SAGA SAG SDCA SVRG REHLINE
sSVM SPF (xle-4) 39.9(+4.6) 28.3(+5.0) 15.0(£2.4) 41.4(£3.9) 4.80(%1.20)
Philippine (x le-2) 243(£27.8) 5.53(+9.8) 1.47(+0.19) 15.8(+6.8) 0.89(%0.10)
Sylva-prior (x le-2) 3.37(£9.81) 3.00(:0.56) 1.57(+0.23) 3.40(20.84) 0.86(+0.14)
Creditcard (x1e-2) 104(£1.4) 15.0(£2.0) 14.0(£1.9) 11.2(£1.4) 6.36(+1.92)
Fail/Succeed 0/4 0/4 0/4 074 0/4

Speed-up (on Creditcard) 1.6x 2.3x 2.2x 1.7x -

ThOﬂk you

15

