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Motivation
Empirical risk minimization

(ERM) is a fundamental

framework in machine learning

Many different loss functions

Efficient solvers exist for

specific problems

E.g., Liblinear for hinge loss

SVM
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Motivation
Can we develop optimization

algorithms for general ERM

loss functions?

Can we achieve provable fast

convergence rates?

Can we transfer the empirical

success of Liblinear to general

ERM problems?
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In this paper, we consider a general regularized ERM based on a
convex PLQ loss with linear constraints:

Model

min L (x β) +β∈Rd ∑i=1
n

i i
⊺ ∥β∥ ,  s.t. Aβ +2

1
2
2 b ≥ 0,

 is the proposed composite ReLU-ReHU loss.

 is the feature vector for the -th observation.

 and  are linear inequality constraints for .

We focus on working with a large-scale dataset, where the
dimension of the coefficient vector and the total number of
constraints are comparatively much smaller than the

sample sizes, that is,  and .

L (⋅) ≥i 0

x ∈i Rd i

A ∈ RK×d b ∈ RK β

d≪ n K ≪ n
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Composite ReLU-ReHU Loss
Definition 1 (Dai and Qiu. 2023). A function  is composite

ReLU-ReHU, if there exist  and  such that

 

L(z)
u,v ∈ RL τ , s, t ∈ RH

L(z) = ReLU(u z +∑l=1
L

l v ) +l ReHU (s z +∑h=1
H

τh h t )h

where , and  is defined below.ReLU(z) = max{z, 0} ReHU (z)τh
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Composite ReLU-ReHU Loss
Theorem 1 (Dai and Qiu. 2023). A loss function  is

convex PLQ if and only if it is composite ReLU-ReHU.

L : R→ R≥0
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Composite ReLU-ReHU Loss

ReHLine applies to any convex piecewise linear-quadratic loss
function (potential for non-smoothness included), including
the hinge loss, the check loss, the Huber loss, etc.
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Main Results

ReHLine has a provable linear convergence rate. The per-
iteration computational complexity is linear in the sample size.

9



ReHLine
Inspired by Coordinate Descent (CD) and Liblinear

The linear relationship between primal and dual variables
greatly simplifies the computation of CD.
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ReHLine

11



ReHLine
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ReHLine
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Experiments
Software. generic/
specialized software

cvx/cvxpy
mosek (IPM)
ecos (IPM)
scs (ADMM)
dccp (DCP)
liblinear -> SVM
hqreg -> Huber
lightning -> sSVM

14



Thank you!
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