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Deep learning with kernels

Combine the flexibility of deep neural networks with the representation
power and solid theoretical understanding of kernel methods.

kj R%*% _valued positive definite kernel

H; : vector-valued RKHS associated with k;
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Generalization of deep kernel methods in RKHS to RKHM

Feature map ¢ °¢(2)

C*-algebra-valued function

ole
(function, image,...)

X RKHM
(Structured data sp.) (Infinite dimensional Hilbert C*-module)
Nonlinear Linear + C*-algebra-valued inner product

Examples of C*-algebra:
e C¥d = {d by d matrices}
® Block((mi,...,mpy),d) =
{d by d block diagonal matrices with block size (m1,...,mar)}

Advantages of RKHM:
e (*-algebra-valued inner products extract information of structures.

¢ RKHM is a natural generalization of RKHS.

® Fundamental properties for data analysis (e.g. representer theorem).
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Deep RKHM

A= C¥xd, Aj : C*-subalgebra of A (e.g. Block((mi,...,mu),d))
kj : Aj-valued positive definite kernel (¢; : feature map)
M : RKHM associated with k; (j =1,...,L)
Ps : Mj — M4 (Perron—Frobenius operator) :
A-linear operator satisfying Pro;(x) = ¢j11(f(x))
Fr={feM; [ IP|<B} (j=1,....L~1)
Fr=AfeMp | [fllm, < B}
Frt={froofil jEF (G=1...,L)}

Deep RKHM : f = fro---0 f] € fgeep 2)
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Advantages and properties of deep RKHM with the P-F operators

e Useful structures of matrices: Interactions among elements are
induced by block diagonal structures of matrices.

e Availability of the operator norm: The operator norm alleviates the
dependency of the generalization error on the output dimension.

e Connection with benign overfitting: We derived a generalization
bound for deep RKHMs using Perron—Frobenius operators, which
provides a connection with benign overfitting.

® Representer theorem: We proved a representer theorem of deep
RKHMs involving the Perron—Frobenius operators.
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Numerical results

Autoencoder with synthetic data Classification task with MNIST
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Conclusion

® \We investigated deep kernel learning with RKHM.

e \We applied Perron—Frobenius operators and the operator norm to
derive a generalization bound.

® The dependence of the bound on the output dimension is milder than
existing bound by virtue of the operator norm. Moreover, the
application of the Perron—Frobenius operator induces a connection
with benign overfitting.
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