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Rethinking Diffusion Model as Multi-Task Learning

- We first rethink the diffusion model as multi-task learning where each task corresponds to denoising
tasks at different timestep

Timestep e o o T
Denoising e o o T
Tasks D

Dt  Denoising task at timestep f learned by L; = ||e — € (X¢,1)] 3.



Analyzing Diffusion Models from Multi-Task Learning

1. Task Affinity: Gradient direction-based task affinity score
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2. Negatlve Transfer Negative Transfer occurs
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We observe that the task affinity for denoising
tasks decreases as the discrepancy between
noise level and timestep increases.

This suggests that tasks sharing

temporal/noise-level proximity can be
cooperatively learned without significant conflict.

Negative transfer refers to deterioration in a
multi-task learner performance due to conflicts
between tasks.

It can be identified by observing the performance

gap between a multi-task and specific-task
learner.

We define NTG for this, when NTG < 0, negative
transfer occurs, showing that a multi-task learner
underperform than a specific task learner.



Leveraging MTL approach

To remediate negative transfer, we leverage well-established MTL methods.

1. Gradient conflicts: PCgrad [1] mitigate conflicting gradients between tasks by projecting conflicting
parts of gradients.

2. Gradient balancing: NashMTL [2] balances gradients between tasks by solving a bargaining game.

3. Loss weighting: Uncertainty Weighting (UW) [3] balances task losses by weighting each task loss
with task-dependent uncertainty.

[1] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn. Gradient surgery for multi-task learning. Advances in
Neural Information Processing Systems, 33:5824-5836, 2020.

[2] Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron, Kenji Kawaguchi, Gal Chechik, and Ethan Fetaya. Multi-task learning as a bargaining
game. In Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages
16428-16446.

[3] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 7482-7491, 2018.



Interval Clustering for Grouping Denoising Tasks

MTL methods can require a large amount of computation, especially when the number of tasks is large.
To address this, we leverage an interval clustering algorithm to group denoising tasks with interval clusters inspired
from task affinity
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For clustering object, we propose
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Results: Improvement of Diffusion Performance

Dataset
Model Clustering | Method FFHQ [26] CelebA-HQ [24]
FID (]) | Precision () | Recall (1) | FID (]) | Precision (1) | Recall (1)
Vanilla 24.95 0.5427 0.3996 2227 0.5651 0.4328
PCgrad [75] 2229 0.5566 0.4027 21.31 0.5610 0.4238
Timestep | NashMTL [41] | 21.45 0.5510 0.4193 20.58 0.5724 0.4303
UW [27] 20.78 0.5995 0.3881 17.74 0.6323 0.4023
ADM [7. 6] PCgrad [75] 20.60 0.5743 0.4026 20.47 0.5608 0.4298
’ SNR NashMTL [41] | 23.09 0.5581 0.3971 20.11 0.5733 0.4388
UW [27] 20.19 0.6297 0.3635 18.54 0.6060 0.4092
PCgrad [75] 23.07 0.5526 0.3962 20.43 0.5777 0.4348
Gradient NashMTL [41] | 22.36 0.5507 0.4126 21.18 0.5682 0.4369
UW [27] 21.38 0.5961 0.3685 18.23 0.6011 0.4130
Vanila 10.56 0.7198 0.4766 10.61 0.7049 0.4732
PCgrad [75] 9.599 0.7349 0.4845 9.817 0.7076 0.4951
Timestep | NashMTL [41] | 9.400 0.7296 0.4877 9.247 0.7119 0.4945
UW [27] 9.386 0.7489 0.4811 9.220 0.7181 0.4939
LDM [50] PCgrad [75] 9.715 0.7262 0.4889 9.498 0.7071 0.5024
SNR NashMTL [41] | 10.33 0.7242 0.4710 9.429 0.7062 0.4883
UW [27] 9.734 0.7494 0.4797 9.030 0.7202 0.4938
PCgrad [75] 9.189 0.7359 0.4904 10.31 0.6954 0.4927
Gradient NashMTL [41] | 9.294 0.7234 0.4962 9.740 0.7051 0.5067
UW [27] 9.439 0.7499 0.4855 9414 0.7199 0.4952




Results: Comparison in Class-Conditional Generation

80
70
60 5
& A 9
0 s ;, G >~ k7]
[ ’\ S - ]
S v
N &

1.5 2.0 2.5 3.0 1.5 2.0 2.5 3.0 1.5 2.0 2.5 3.0 1.5 2.0 2.5 3.0
Guidance scale Guidance scale Guidance scale Guidance scale
—— Vanilla --#- UW-Grad —e— Nash-Time -4 Nash-SNR m- PCgrad-Grad
—o— UW-Time —-4- UW-SNR —#- Nash-Grad —o— PCgrad-Time —#-- PCgrad-SNR




Results: Reduced Negative Transfer Gap
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Highlighted Results: ANT-UW

Our method, ANT-UW, that employ UW with interval clustering greatly outperforms MinSNR. 2. ANT-UW needs similar
computation and memory cost to Vanilla training.

Table 2: Comparison between MinSNR and  Table 3: GPU memory usage and runtime com-

ANT-UW. Di1T-L/2 is trained on ImageNet. parison on FFHQ dataset in LDM architecture.
Method I FID | IS l Precision | Recall Method | GPU memory usage (GB) | # Iterations / Sec
Vanilla_ | 12.50 | 13460 | 073 | 049 vanilla S =08
MinSNR | 9.58 | 17998 | 0.78 | 0.47 el & S
ANT-UW | 6.17 | 203.45 0.82 0.47 uw 34.350 2.103




Project page:
https://gohyojun15.qithub.io/ANT _diffusion/

Code:
https://github.com/gohyojun15/ANT _diffusion
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