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Image Generative Models and Evaluation Protocol
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Image Generative Models and Evaluation Protocol
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Image Generative Models and Evaluation Protocol

P(X)
fo(*)
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Real image distribution o O Fake image distribution
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fo(-): Pretrained embedding network
O : Extracted real image features
O : Extracted fake image features



Image Generative Models and Evaluation Protocol

Measure difference

P(X)
fo(*)
l ‘ I ORS O fo(*)
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fo(-): Pretrained embedding network
O : Extracted real image features
O : Extracted fake image features



Image Generative Models and Evaluation Protocol

Artifacts Mislabeled cases

P(X)
o e” e Ko
O o _
,¢”’ O R, Q(Y)

fo(-): Pretrained embedding network
O : Extracted real image features
O : Extracted fake image features

Pleiss, Geoff, et al. "ldentifying mislabeled data using the area under the margin ranking.” Advances in Neural Information Processing Systems 33 (2020): 17044-17056.



Image Generative Models and Evaluation Protocol

(1) Ideal estimation of distribution

: real image features : real noisy features
(O : fake image features () : fake noisy features



Image Generative Models and Evaluation Protocol

(1) Ideal estimation of distribution

P(X)

Correctly measured scores
O O Fidelity = Q(supp(P)) = 0.16
Diversity = P(supp(Q)) = 0.16
O O
O _
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(O : fake image features () : fake noisy features



Image Generative Models and Evaluation Protocol

(2) Non-ideal estimation of distribution

P(X)

Correctly measured scores
O O O Fidelity = Q(supp(P)) = 0.16
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O O O
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Image Generative Models and Evaluation Protocol

(2) Non-ideal estimation of distribution

P(X)

O

O

Incorrectly measured scores

o Fidelity = Q(supp(P)) = 0.75
Diversity = Q(supp(P)) = 0.5

5w
() : real image features 8 : real noisy features
O : fake image features : fake noisy features
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Overview of TopP&R

Real . X
images —*| Feature [*]| (a) Probability support estimation | (b) Confidence band — (c) TopP and TopR
Generated —»{embedder}—» via KDE and bootstrap estimation > evaluation
images /y

(a) /\j\ﬁh Kernel Density (b) Given confidence level 1 — a, bootstrap confidence band ¢, computed from 6, -

Estimator for features satisfies liminf , o P (||pr, — Pullee <€) =1 —«a

‘—-Il-‘ Bootstrap Sampling A Bireh]
b sz 0= o — 20| ¥ W
e S el oo cali # Topological &
ﬁr(lk) s 0, = ||p '_ﬁi(lk) . / c'a — J Pr[ca) )

_Ca

(c) Given supp(P) for real features X and supp(Q) for generated features U,

Yiz1 1(Y; € supp(P) n supp(Q))
TopPy(Y) === s 1(Y; € supr
j=1+t\j pp(Q))
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Overview of TopP&R
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Overview of TopP&R
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Overview of TopP&R

Real X
images —*| Feature [*]| (a) Probability support estimation | (b) Confidence band — |  (c) TopP and TopR
Generated —>{embedder via KDE and bootstrap estimation — evaluation
images /y
supp(P)
TopP — precision
n—>0o
TopR — recall
n—>0o
See our proposition 4.1
and theorem 4.2
supp(Q)
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Topological Data Analysis (TDA) as a Solution

Selecting a threshold that effectively removes noisy samples

(1) Reference

O : significant feature

O : noisy features

: support of estimated distribution
I : ground truth support of distribution
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Topological Data Analysis (TDA) as a Solution

Selecting a threshold that effectively removes noisy samples

(2) When § = 0.01 (over-estimated case)

O : significant feature

O : noisy features

: f . . . . ]
support of estimated distribution . /\ N\

I : ground truth support of distribution { 5 4 Y 5 H { " 5
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Topological Data Analysis (TDA) as a Solution

Selecting a threshold that effectively removes noisy samples

(3) When § = 0.3 (under-estimated case)

O : significant feature

O : noisy features

: support of estimated distribution
I : ground truth support of distribution

18



Topological Data Analysis (TDA) as a Solution

Selecting a threshold that effectively removes noisy samples

4) 6 0,1 i I
(4) 6 €10, § €[0,1] What is the optimal threshold?

O : significant feature

O : noisy features

: support of estimated distribution
I : ground truth support of distribution
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Topological Data Analysis (TDA) as a Solution

Tracking when homological feature appear and disappear

v

v

v

v

v

: 0-dim homological feature

or connected component

: threshold 6

: significant feature

: noisy features
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Topological Data Analysis (TDA) as a Solution

Tracking when homological feature appear and disappear
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: birth of 0-dimensional homology happens oL—— >
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: 0-dim homological feature or connected component

21



Topological Data Analysis (TDA) as a Solution

Tracking when homological feature appear and disappear

£
=
' 9
O
-0
o
: death of O-dimensional homology happens
= = = : birth of 0-dimensional homology happens 0b—
d,d

: 0-dim homological feature or connected component

>
death

22



Topological Data Analysis (TDA) as a Solution

Tracking when homological feature appear and disappear

£
=
O
O
-0
o
: death of O-dimensional homology happens
= = = : birth of 0-dimensional homology happens 0b—
d,d

: 0-dim homological feature or connected component

>
death

23



Topological Data Analysis (TDA) as a Solution

Tracking when homological feature appear and disappear
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Confidence Band Estimation

Finding the threshold c, that selects statistically and topologically significant features
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O :significant feature () : noisy features . estimated support of distribution
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Confidence Band Estimation

Finding the threshold c, that selects statistically and topologically significant features

/

O :significant feature () : noisy features . estimated support of distribution
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Confidence Band Estimation

Finding the threshold c, that selects statistically and topologically significant features
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O :significant feature () : noisy features . estimated support of distribution
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Confidence Band Estimation

Finding the threshold c, that selects statistically and topologically significant features
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Experiments & Results - perturbation experiment

Fake distribution Real distribution

Outlier

Fidelity Diversity

| .
1.0 *.,,,4 1.0| ®
0.7 ' 0.7
0.5 0.5
0.2 =@+ Imp. precision 0.2 @+ Imp. recall
0.0l == Density 0.0 =g= (Coverage

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

Center of fake distribution u Center of fake distribution u
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Experiments & Results - ranking experiment

Metric's consistency “with FID and KID scores” & “with different embeddings”

Rankings

FID:

Fixed embedding [
KID:

3 4
InceptionV3 . .

. StyleGAN2 . ReACGAN ‘: BigGAN .: PDGAN . ACGAN : WGAN
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Thank you

Project Page
Quick Start!

pip install top-pr U

Use our method by only pip command!
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