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Motivation

e The quality of data used to fuel Al systems is critical in unlocking the full

potential of large models
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* However, real-world scenarios often present mislabeled, duplicated, or

biased data, leading to
» prolonged training procedure

» poor model convergence
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Solution: prioritize valuable training data

Curriculum learning [Bengio et al., 2009] advocates prioritizing easy samples
in the early training stages

But, they quickly
become redundant
once been learned

Lesson A Lesson B Lesson C

Online batch selection [Loshchilov et al., 2015; Jiang et al. 2019] prioritizes
hard samples with high training loss/gradient norm to avoid duplicate training

’ *
. . But, the hardness of samples often arises from

oird Bird Bird il pathologies such as improper annotations,

m % . inherent ambiguity, or unusual patterns
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Coreset selection methods performs one-shot selection, unable to adapt to

various training stages; data pruning methods often retains only hard samples
3



Solution: prioritize valuable training data

Traditional methods prioritizing easy or hard samples are
not flexible enough



Reducible hold-out loss selection (RHO-LOSS)
[Mindermann et al., 2022]

* Quantify the usefulness of a sample based on its A 18K speedup
2
marginal influence on the model’s generalization loss 2
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* |t prioritizes points that are learnable, worth learning, and not yet learnt

OO0 However, three less principled approximations are required due to tractability:
|. fit the models with SGD instead of Bayesian inference
2. Ly | ; Dpo, Dy = L[y | z; Dho]
3. train a smaller irreducible loss model

[0 Besides, it needs a considerable number of holdout data to train an auxiliary

validation model, which can be costly and should be performed repeatedly for
new tasks




This work

* Aims to improve the accessibility and reliability of the generalization loss-
based data selection principle

max log p(y|z, D", Di—1) — log p(y|z, Di—1)
(w7y)€Bt

D™ denotes the validation dataset and D;_; denotes the training data until time
step t

e To achieve this:

» We establish a more reasonable approximation of the original objective than RHO-
LOSS while eliminating the need for holdout data

» We maintain a Bayesian treatment of the training model to ensure an accurate
estimation of the original objective



A lower bound of logp(y|x, D", D;_1)

* Basically, there is

log p(y|z, D*, Dt-1) = log/p(D*IH)p(HIDt—l)p(ylw,9)d9 — log p(D*|D¢—1)

* By Jensen’s inequality, there is

log p(ylz, D", Di-1) 2 Ep(g|p,_,) log p(ylz, 0) + Epoip, ) log p(D*|0) — log p(D* D1

N—"

log p(y|z, D*,Ds_1) > Epgip+) log p(y|z, 0) + Epg)p+) log p(Ds—1|0) — log p(Di—1|D”)
* Combining them, there is
log p(y|z, D", Dy—1) > alk,6D,_1) log p(y|z,0) + (1 — a)Ep(gm*) log p(y|x, 0) + const.

a is a trade-off coefficient

* Given these, the data selection principle becomes:

(xrg)aEXB aEp(9|Dt—1) lng(y|$, 9) + (1 - a)Ep(9|D*) logp(y|x, 9) — log Ep(9|7.7t—1)p(y|x7 9)

* This way, the posterior predictive defined on the training data is separated
from that defined on the holdout data 7



Zero-shot predictor as the validation model

*  We propose to use off-the-shelf zero-shot predictors built upon large-scale
pre-trained models (such as CLIP) as a proxy for the validation model:

Ey(o|p+) log p(y|z, 0) = log p(y| f(x))

» The pre-trained model can be viewed as a universal validation model trained
on an extensive dataset, leading to the Bayesian posterior collapsing to a point
estimate

» Although its training data may not precisely follow the data-generating
distribution for the current task, they share fundamental patterns with the
data in our problem, making the above approximation reasonable



Lightweight Bayesian treatment of the training model

hax, By o1p,_,) log p(y|x, 0) + (1 — a)Epgp+) log p(y|z, 0) — log Epop,_,)p(ylz, 0)

To ensure an accurate estimation of the first and third terms in the objective,
we need to estimate the Bayesian posterior over parameters

However, our original goal is to accelerate training of a deterministic model

To bridge the gap, we adopt the simple and effective Laplace
approximation[Mackay, 1992] for Bayesian inference

It effortlessly converts point-estimate parameters to a Gaussian posterior

d0De 1) = N (01, G), Geor = I + 3 (32 I, (&) Ao, (,0) o, (=)

=1 z,y€eb;

where Jy, () := Vo fo(x)|o=o, and Ay, (x,y) := V?[— 10gp(y|f)]|f=fei (z)-

Further introduce Kronecker-factored (KFAC) [Martens & Grosse, 2015] and
last-layer [Kristiadi et al., 2020] approximations to accelerate the processing



The final objective

S S
max o< Y logp(lf)] + (1 - @) logn(yl (@) — log [ 3~ p(u11)]
s=1

B
(mvy)e t s=1

Where f:I(ZS) ~ Q(fxu)t—l) :N<f9t—1(x)7 (het—l(x)-r‘/t:llh‘et—l(x))Ut_—11>

The algorithm

Algorithm 1 Bayesian data selection to accelerate the training of deterministic deep models.

[

1:

Input: Number of iterations 7", dataset D, prior precision 79, number of effective data n., batch size np,
number of selections np, zero-shot predictor f, deterministic model with parameters 6.

2: Intialize 6g, Ag < 0, Go « O;

3: fortinl,..., T do

4: Draw a mini-batch B; from D;

50 Vici < VneAi—1 + /7ol Ui—1 < /neGi—1 + \/T01;

6:  Estimate the objective in Equation (16) for every sample in B; and select the top-n; ones to form by;

7:  Perform back-propagation with >, logp(y|fs, , (z));

8:  Apply weight decay regularization and do gradient ascent to obtain 6,;

9:  Use the last-layer features and softmax gradients to update A; and G+ with exponential moving average;
0: end for
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Results
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Figure 2: Training curves corresponding to us-
ing pre-trained ViT-B/16 as the model backbone.

(WebVision-200; 1 epoch=344 iterations)
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(a) Proportion of label noise in selection.

Method\Dataset ~ CIFAR-10 CIFAR-10* CIFAR-100 CIFAR-100*
CLIP Acc 75.6% 75.6% 41.6% 41.6%
Target Acc 80.0%  87.5% 75.0%  85.0% 40.0% 525% 40.0%  47.5%
Train Loss 81 129 (90%) C - (28%) 138 - (42%) o - (4%)
Grad Norm _ - (61%) - - (23%) 139 - (42%) L - (4%)
Grad Norm IS 57 139(89%) 57 - (84%) 71 132 (55%) 94 142 (48%)
SVP - - (55%) - - (48%) _ - (18%) _ - (14%)
Trred Loss - (60%) S - (62%) 93 - (43%) 89 - (43%)
Uniform 79 - (87%) 62 - (85%) 65 133(54%) 79 116 (50%)
RHO-LOSS 39 65(91%) 27 49(91%) 48 77(61%) 49 65 (60%)
Proposed 33 61 (91%) 25 47(91%) 32 53(63%) 39 53(61%)

Proposed 10 BN Proposed

Experiments on CIFAR,
Noisy-CIFAR, Imbalanced-
CIFAR, and WebVision
evidence the superior
training efficiency and final
accuracy of our method
over competitive baselines
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Thanks!
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