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Teacher Student framework Where the regularization term Q 1is:
¢« Q(w) = a,,L,(w) if the layer is Dense

* Q(p, 1) = apl,(P) + ayL,(A) if the layer 1s Spectral
Then the feature norm is extracted and compared. More specifically

Widely used machine learning scheme. The Student network
needs to approximate the Teacher network
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. § g s - The histogram of R;.,5. (in orange) and Rgpectrqr (in blue) is shown
P for different h. Remarkably, with the spectral regularization, a core
x(gl) R v of non-zero eigenvalues can be spotted as soon as h > 20, namely
[ Spectral or Dense of size h ] Teacher’s dimension hy,.,.her, Whereas the large majority 1s basically
: .. zero. The same effect holds true for different Teacher sizes.
Question: Can we know where the Teacher is 1nside the . . .
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Student network?
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We decompose the adjacency matrix of the network into L 40 - - -
eigenvalues 1" and 19%, and eigenvectors ¢,, where k 8
k k > g K> Ay 20 A .
ranges across the layers of the neural network. The learning . |u.' oL

procedure 1s then reframed in terms of these global 0.0 . 0.5 1.0 0.0 0.5 1.0
parameters, allowing for the simultaneous adjustment of R/max(R)
multiple weights. Each transfer identifies two groups: inbound The Invariant Subnetwork

neurons (layer k — 1) and outbound neurons (layer k). If we examine the size of the non-zero core across a wide range of
h, we observe distinct behaviours depending on the type of
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T ) (T (T (T ) A regularization employed, whether it be Spectral or Weight Decay.
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We can parametrize the connection with respect to the 0l" . . . . -
elgenvectors components and the eigenvalues obtaining a closed 0 200 0 Uit (2())0 800 1000
and simple formula. The test performance remains consistent across all models,
e Activi for £ | Y — 1 to k N 1rrespective of the type of layer employed. The spectral network
ctivity transter I‘OII.l Tay er ik —1to r: 1s then node pruned based on the Rgyoqtrq; metric, which serves
X, = WiXp_1 = O [(qbk O A0 — A,‘éut OX )xk_l] as a measure of feature relevance. When plotting the variation
In components, dropping index k on ¢, A 1in mean squared error (MSE) with r.egpect .to the unpruned
| network, we observe a phase transition-like behavior. The
(xp); =0 z(qbij/l}" — A?utqbij)(xk)j trend of A5 remains consistent regardless of the initial size 7,
: and the critical point occurs when the pruned network reaches
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the same size (complexity) as the Teacher network. Same
Xk—1 Xk Xk—1 Xk results also with more realistic dataset (F-MNIST-MNIST-
o California Housing-CIFAR100 (with ResNet50 backbone)
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The number of trainable A are of the same order as the 10-2
neurons. A much more efficient training i1s possible. In the 103
following A = 0 for simplicity. In this framework V;, 4 Loss 104
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Thanks to this novel approach, we can 1ncorporate feature- Teacher
ori.e.nted regularization. Furtherm(?re, .t}.liS relationship can be References
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