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Background
• Spatio-Temporal Graph (STG) represents the spatial and temporal 

relationships between nodes or entities, which is widely used in various 
fields (e.g., transportation, environment and epidemiology)

• STG forecasting has become crucial in the context of smart cities (e.g.
informed decision-making, sustainable environments)
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Challenges
• Temporal Distribution Shift

• Dynamic Spatial Causation
• Existing work: 

• Distance-based adjacency matrices
• Attention mechanism

• However, the ripple effect of causations 
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paths

Confounding factors
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Experiments
• Datasets: PEMS08, AIR-BJ, AIR-GZ
• Experiment settings: predict over the next 24 steps given the past 24 steps
• Evaluation metrics: MAE, RMSE



Ablation Study & Interpretation Analysis
• Effects of Core Components

• w/o Env: excludes environment features for prediction.
• w/o Ent: omits entity features for prediction.
• w/o Edge: not utilize the causal score to guide the spatial message passing
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Ablation Study & Interpretation Analysis
• Effects of Edge Convolution

• CaST-ADP: using a self-adaptive adjacency matrix
• CaST-GAT: using the graph attention mechanism for causal scoring

• Visualization of Dynamic Spatial Causation



Ablation Study & Interpretation Analysis
• Analysis on Environmental Codebook

• Interpretation of Temporal Environments



Conclusion

• Took a causal look at the STG forecasting problem

• Utilized back-door and front-door adjustments for resolving challenges

• Introduced a novel Causal Spatio-Temporal neural network (CaST)

• Verified effectiveness, generalizability, and interpretability through 
extensive experiments on three datasets



Xia et al., Graph Forecasting: A Causal Lens and Treatment. NeurIPS, 2023.


