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* Spatio-Temporal Graph (STG) represents the spatial and temporal
relationships between nodes or entities, which 1s widely used in various
fields (e.g., transportation, environment and epidemiology)

1 ®, < 5 Transportation

Epidemiology Environment

* STG forecasting has become crucial in the context of smart cities (e.g.
informed decision-making, sustainable environments)
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* Temporal Distribution Shift
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* Temporal Distribution Shift
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* Dynamic Spatial Causation

* Existing work:
* Distance-based adjacency matrices
* Attention mechanism

* However, the ripple effect of causations
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E: temporal environment
C: spatial context
X: historical signal

X Y: future signal
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A Causal Lens /

E: temporal environment
C: spatial context
X: historical signal

X Y: future signal

(a)

« X € E =2 Y The temporal OoD can arise due to changes in external variables over time. (e.g.,

weather can affect traffic flow observations)
c X€CDY
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E: temporal environment
C: spatial context
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X Y: future signal

(a)

« X € E =2 Y The temporal OoD can arise due to changes in external variables over time. (e.g.,
weather can affect traffic flow observations)

« X€ C=2Y XandY are intrinsically affected by the surrounding spatial context, comprising both
spurious and genuine causal components.
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E: temporal environment
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X Y: future signal
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« X € E =2 Y The temporal OoD can arise due to changes in external variables over time. (e.g.,
weather can affect traffic flow observations)

« X€ C=2Y XandY are intrinsically affected by the surrounding spatial context, comprising both
spurious and genuine causal components.

« X =Y Our primary goal.

July 7, 2023 N7 0



of Singapore

A Cau Sal Lens | ; ' National University

E: temporal environment
C: spatial context
X: historical signal

X Y: future signal

(a)

Backdoor [X <E-> Y] The temporal OoD can arise due to changes in external variables over time. (e.g.,

ffect traffic flow observations)
paths . [x ¢ C 2 Y | X and Y are intrinsically affected by the surrounding spatial context, comprising both
spurious and genuine causal components.
« X =Y Our primary goal.
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Confounding factors

[ ] E: temporal environment
C: spatial context
X: historical signal
X Y: future signal

(a)

Backdoor [X <E-> Y] The temporal OoD can arise due to changes in external variables over time. (e.g.,

ffect traffic flow observations)
paths . [x ¢ C 2 Y | X and Y are intrinsically affected by the surrounding spatial context, comprising both
spurious and genuine causal components.
« X =Y Our primary goal.
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Causal Treatments i NUS

* Back-door adjustment for E

P(Y|do(X Z P(Y|do(X),E = e)P(E = e|do(X))
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Causal Treatments CEF s

* Back-door adjustment for E

P(Y|do(X Z P(Y|do(X),E = e)P(E = e|do(X))
_Z P(Y|do(X),E =e)P(E = ¢)
=Y P(Y|X,E=¢)P(E=¢)

* Front-door adjustment for C

P(Y|do(X)) = Z P(Y|do(X™ = z™))P(X™ = z"|do(X)) ‘
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« Causal Spatio-Temporal neural network (CaST)
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Figure 3: The pipeline of CaST. Env: Environment. Ent: Entity. Feat: Feature.
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» Causal Spatio-Temporal neural network (CaST)
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» Causal Spatio-Temporal neural network (CaST)
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(1) Separate Environment &-Entity

Figure 3: The pipeline of CaST. Env: Environment. Ent: Entity. Feat: Feature. /
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» Causal Spatio-Temporal neural network (CaST)

Back-door adjustment

(2) Discretizing the environments

Figure 3: The pipeline of CaST. Env: Environment. Ent: Entity. Feat: Feature.
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» Causal Spatio-Temporal neural network (CaST)

Front-door adjustment

Figure 3: The pipeline of CaST. Env: Environment. Ent: Entity. Feat: Feature. PR
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» Causal Spatio-Temporal neural network (CaST)

Front-door adjustment
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» Causal Spatio-Temporal neural network (CaST)
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» Causal Spatio-Temporal neural network (CaST)
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Figure 3: The pipeline of CaST. Env: Environment. Ent: Entity. Feat: Feature. o
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Experiments

* Datasets: PEMSO0S8, AIR-BJ, AIR-GZ
* Experiment settings: predict over the next 24 steps given the past 24 steps
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e Evaluation metrics: MAE, RMSE

Table 1: 5-run error comparison. The bold/underlined font means the best/the second-best result.

—— PEMSO08 (24— 24) AIR-BJ (24—24) AIR-GZ (24—24)
MAE RMSE MAE RMSE MAE RMSE

HAQ2017) 58.83 81.96 302 43.95 19.56 25.77

VAR(199 1) 37.04 53.08 29.79 42.04 14.97 20.61

DCRNN(2017)  |22.10+0.45 33.96 £0.59 | 23.72+0.36 35.84+0.56 | 1299026 18.27 +0.41
STGCN(2018) 18.60 £ 0.08 28.44 +0.15 | 23.71 £0.21 3630+0.58 | 12.69 +0.04 17.66 + 0.09
ASTGCN(Z(T@ 20.36+0.48 30.87 £0.55|23.78+0.22 3591 +0.11 | 1291 +£0.15 18.02 +0.27
MTGNN(2020) | 18.13£0.10 28.85+0.12 | 24.35+0.74 3897+ 1.81 | 1243+0.11 17.99+0.18
AGCRNQZUZO) 17.06 + 0.14 26.80 +0.15 | 23.43£0.29 35.66+0.57 | 1274 +£0.01 17.49 + 0.01
GMSDR(2022) | 18.34+0.68 2836+ 1.01 | 2592+0.52 39.60 +0.44 | 13.47 £0.31 19.04 £0.46
STGNCDE(2022) | 17.55+0.30 27.28 £0.36 | 24.35+0.31 35.91+0.48 | 13.70+0.10 19.15+0.07
CaST (ours) 16.44 +0.10 26.61 +0.15 | 22.90 +0.09 34.84+0.11 | 1236 +0.01 17.25 +0.05



Ablation Study & Interpretation Analysis
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* Effects of Core Components

* w/0 Env: excludes environment features for prediction.
* w/0 Ent: omits entity features for prediction.

* w/o Edge: not utilize the causal score to guide the spatial message passing
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Ablation Study & Interpretation Analysis  § NUS

* Effects of Edge Convolution

* CaST-ADP: using a self-adaptive adjacency matrix
* CaST-GAT: using the graph attention mechanism for causal scoring

Table 2: Variant results on MAE over AIR-BJ. s: steps.

Variant Overall 1-8s 9-16s 17-24s
CaST-ADP 24.28 16.42 26.06 30.36
CaST-GAT 2371 14.76 25.75 30.80
CaST 22.90 13.79 24.86 30.05
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* Effects of Edge Convolution

* CaST-ADP: using a self-adaptive adjacency matrix
* CaST-GAT: using the graph attention mechanism for causal scoring

Table 2: Variant results on MAE over AIR-BJ. s: steps.

Variant Overall

1-8s 9-16s 17-24s

CaST-ADP 24.28
CaST-GAT 2571

CaST 22.90

16.42 26.06 30.36
14.76 2500 30.80
13.79 24.86 30.05

* Visualization of Dynamic Spatial Causation
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(b) Dynamic Causal Relations
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* Interpretation of Temporal Environments
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Conclusion

* Took a causal look at the STG forecasting problem

e Utilized back-door and front-door adjustments for resolving challenges

* Introduced a novel Causal Spatio-Temporal neural network (CaST)

 Verified effectiveness, generalizability, and interpretability through
extensive experiments on three datasets
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