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- Anomaly Detection
N
 Identify abnormal samples. b (/

Localize abnormal regions.

* The training set usually includes only normal samples.
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« Anomalies are varied and unpredictable.
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 Current 3D Anomaly Detection
« Extend RGB anomaly detection to RGBD.
«  Only single side. X image - y image 7z image RGB image ground truth

B onomalons region
~0.03m 0.10m  ~0.08m 0.05m  0.51m 0.59m

Figure 3: Visualization of the provided data for one anomalous test sample of the dataset category peach. In addition to three

images that encode the 3D coordinates of the object, RGB information as well as a pixel-precise ground-truth image are

provided.
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 Enabling the model to recognize anomalies like humans do

* Humans rely on a complete product prototype to infer defects in other products.
* Providing complete product prototypes for the training set, eliminating factors such as object poses and shooting angles.

* During testing, only one side is observed, just like manual inspection on the actual production line.

Training sample (full object) Test sample (one side)

Figure 7: Examples of training and test samples in
Real3D-AD.
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Dataset: data collection

* The training prototype samples used for training are obtained through multiple scans and manual stitching.

& + nen + ﬁ —
Flip templet

Scan result 1 Scan result N Prototype

Figure 3: A prototype in the training set is made from two or more scan results.
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. Dataset: data collection

We used CloudCompare to label anomalies and output the raw data in pcd format.

Ground truth file

Abnormal point cloud area | Annotation

-
-

Annotated point clouds

Original point clouds Using bound-box
to annotation

Normal point cloud area

Figure 4: Anomalies annotation in Real3D-AD.

[4] CloudCompare Community. Cloudcompare - a 3d pointcloud and mesh software. 2016.
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Dataset: data

* Our dataset contains 12 different objects.
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Figure 1: Real3D-AD dataset examples for each category. The blue box indicates the normal images
in the training dataset. The red box denotes the abnormal images in the test dataset. There are no
blind spots in Real3D-AD since our dataset are achieved by scanning all the views of the object
instead of the single view photoed by RGBD camera.
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« Dataset: data statistics

* The objects we captured are relatively small, and the proportion of defect points is low, which brings some challenges to the detection.

Category Real Size [mm] Atiribate Training Test Total Anomaly Point Ratio

Length Width Height Normal  Normal Abnormal A
@ Airplane 34.0 14.2 31.7  Transparency 4 50 50 104 1.18%
e Car 35.0 29.0 12.5  Transparency 4 50 50 104 1.99%
@8 Candybar 33.0 20.0 8.0 Transparency 4 50 50 104 2.37%
" Chicken 25.0 14.0 20.0 White 4 52 54 110 4.39%
@  Diamond 29.0 29.0 18.7  Transparency 4 50 50 104 541%
& Duck 30.0 22.2 294  Transparency R} 50 50 104 2.00%
% Fish 3.7 24.0 4.0 Transparency 4 50 50 104 2.86%
& Gemstone 22.5 18.8 17.0  Transparency - 50 50 104 2.06%
" Seahorse 38.0 11.2 3.5 Transparency 4 50 50 104 4.57%
@ Shell 21.7 22.0 1.1 Transparency < 52 48 104 2.25%
% Starfish 274 274 4.8 Transparency 4 50 50 104 4.47%
ams  Toffees 38.0 12.0 10.0  Transparency . 50 50 104 2.46%
Mean 30.9 20.3 13.9 — - 50 50 104 3.00%

Total - - — - 48 604 602 1254 -
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Dataset: data statistics

*  We used CloudCompare to label anomalies and output the raw data in pcd format.

O Training samples 2 Test normal samples © Test abnormal samples
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Figure 6: Point numbers for all samples on a logarithmic scale, visualized by a box-and-whisker plot.
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Benchmark: M3DMI51, BTFI¢l and PatchCorel”]

 We adapted some feature-based retrieval methods to our dataset to establish a benchmark.
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Figuze 2. The pipdine of Multi-3D-Memory (M3DM). Our MIDM contains three impostamt pasts: (1) Poinr Featwre Aligmment (PFA)
- 1 . . 8 . : A % converts ot Growp features 1o plane features with imerpolation and project operation, FPS is the fathest poiot sampling and F, is
Figure 2. Overview of PatchCore. Nominal samples are broken down into a memory bank of neighbourhood-aware patch-level features. oo v 05 G o ervised Foature Fusinn (UFF) flases point festure and image featare togethes with a patch-

For reduced redundancy and inference time, this memory bank is downsampled via greedy coreset subsampling. At test time, images are  wise contrastive loss £, whene Fy o b a Vision Transformer, vy, Xpe 302 MLP layers and o, o, are single fully conneced layers,
(3) Decision Layer Fuxion (DLF) comb Iamsodal il son with multiple memory bunks and makes the limal deciston with 2

classified as anomalies if at least one patch is anomalous, and pixel-level anomaly segmentation is generated by scoring each patch-feature. ol Tl D B Tty deection and segmentation, whese M, yo, M o Mo ase memary banks, 6, v ¢ score fanction
for skngle memary bunk dotection und segnseatation, und 7 is the memuory bunk buibding algorithm.

| Industrial Anomaly Detection via Hybrid Fu5|on In Pr
need for 3d anomaly d
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Benchmark: M3DMI[4l, BTFI5! and PatchCorel®]

 We adapted some feature-based retrieval methods to our dataset to establish a benchmark.

Table 4: ADBENCH-3D for Real3D-AD. The score indicates object-level AUROC 1. The best results

are highlighted in bold.
Category BTF M3DM PatchCore Reg3D-AD
Raw  FPFH PointMAE PointBERT FPFH FPFH+Raw PointMAE
Airplane 0.730  0.520 0.434 0.407 0.882 0.848 0.726 0.716
Car 0.647 0.560 0.541 0.506 0.590 0.777 (0.498 0.697
Candybar 0.539 0.630 0.552 0.562 0.541 0.570 0.663 0.685
Chicken 0.789 0.432 0.683 0.673 0.837 0.853 0.827 0.852
Diamond  0.707 0.545 0.602 0.627 0.574 0.784 0.783 0.900
Duck 0.691 0.784 0.433 0.466 0.546 0.628 0.489 0.584
Fish 0.602 0.549 0.540 0.556 0.675 0.837 0.630 0.915
Gemstone 0.686 0.648 0.644 0.617 0.370 0.359 0.374 0.417
Seahorse 0.596 0.779 0.495 0.494 0.505 0.767 0.539 0.762
Shell 0.396 0.754 0.694 0.577 (.589 0.663 0.501 0.583
Starfish 0.530 0.575 0.551 0.528 0.441 0.471 0.519 0.506
Toffees 0.703 0.462 0.450 0.442 0.565 0.626 0.585 0.827

Average 0.635 0.603 0.552 0.538 0.593 0.682 0.594 0.704

| Industrial Anomaly Detection via Hybrid Fusion. In Pri
need for 3d anomaly d
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- Baseline: Reg3D-AD
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* Based on the characteristics of the dataset, we combined point cloud registration with feature-based retrieval for anomaly detection.

< e Test flow
¥ ‘4/ \‘» st Training flow
- Coordinate feature
Registration I PointMAE feature

Test and prototype point clouds

_— - =
*e Feature Extractor | I | Search and compute
& & I [} anomaly score

Prototype point clouds Memory bank M Anomaly part

Figure 8: Pipeline of our baseline method. We extract features from the training set and sample
the most representative features to the memory bank during training. During inference, we use the
prototype as the target to calibrate the test sample and then extract the characteristics of the test
sample to compare with the memory bank. We compute the anomaly score for each point according
to the distance between test features and the memory bank.

| Industrial Anomaly Detection via Hybrid Fusion. In Pri
need for 3d anomaly d i
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