SIT Dataset:

Socially interactive Pedestrian Trajectory Dataset
for Social Navigation Robots
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1. Challenges

* The Advent of diverse driving robots
= EXxplosive growth of service robot market

» |nsufficiency of comprehensive datasets for autonomous mobile robots
» Necessity for socially interactive robots

= Human Perception in 3D and movement prediction for safe and agile navigation

(a) Food delivering robotlll (c) Guide robot 3l
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1. Challenges: Pedestrian Trajectory Datasets

= Data collected from fixed positions, potentially restricting the range of data variability
= Hard to reflect Human-Robot Interaction (HRI)

» Mostly consisting of camera images and data on pedestrian location

(a) ETH-Hotel 4 (b) UCY-Zara 8!

(c) SDD 3



1. Challenges: Autonomous Driving Datasets

» Vehicle-centric on autonomous driving datasets rather than pedestrian-centric
= A Shortage of vehicle-pedestrian interaction in autonomous driving datasets
= Gaps in real-world robot and pedestrian interaction behavior

» Asynchronous multi-sensor data in robot-based datasets

Past Trajectory

Future Trajectory ~~ *veiaiiiias
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(a) nuScenesl” (vehicle-based) (b) Waymo Openl®l (vehicle-based) (c) JRDB ! (robot-based)
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1. Challenges: Comparison with other datasets

» Pedestrian trajectory datasets:
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= Data collected from fixed positions, potentially restricting the range of data variability

= Autonomous driving datasets:

» Vehicle-centric on autonomous driving datasets rather than pedestrian-centric

» Asynchronous multi-sensor data in robot-centric datasets

*1: Multi — layered map

Dataset Platform Task Sync. Map E2E Location
UcCYy Fixed Tracking, Prediction - Outdoor
ETH Fixed Tracking, Prediction Outdoor
SDD Fixed Tracking, Prediction - Outdoor
nuScenes Vehicle Detection, Tracking, Prediction 4 vT Outdoor
Waymo Open Vehicle Detection, Tracking, Prediction v v Outdoor
Argoverse Vehicle Detection, Tracking, Prediction v vT v Outdoor
JRDB Robot Detection, Tracking Indoor & Outdoor
SiT(Ours) Robot Detection, Tracking, Prediction v vT v Indoor & Outdoor
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2. SIT Dataset: Real-world Context

» Collected data from dense areas like campuses and public roads
= Authentic Human-Robot Interactions in real-world settings

= Capturing data without any actors or pre-arranged scenarios

(a) Outdoor scene (Crosswalk) (b) Indoor scene (Hallway)



2. SIT Dataset: Diverse Data Collection

= Sequential raw data from various sensors
= 60 scenes with 60K images and 12K point cloud frames at 10 Hz
= 2D and 3D bounding boxes for 6 classes

= Car, bus, truck, pedestrian, cyclist, motorcyclist
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Husky UGV platform equipped with various sensors



2. SIT Dataset: Diverse Data Collection

» Sequential raw data from various sensors
» 60 scenes with 60K images and 12K point cloud frames at 10 Hz
= 2D and 3D bounding boxes for 6 classes

» Car, bus, truck, pedestrian, cyclist, motorcyclist

(a) 2D Bounding Boxes labeled on Image (b) 3D Cuboid labeled on Point Clouds



2. SIT Dataset: Unique Features

Precise multi-sensor synchronization

Multi-layered indoor & outdoor semantic maps from SLAM

Cover tasks from 3D detection to motion forecasting (End-to-end)

Emphasis on Human-Robot Interactions (HRI)
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Diagram for multi-sensor synchronization




. SIT Dataset: Unigue Features

Precise multi-sensor synchronization

Multi-layered indoor & outdoor semantic maps from SLAM

Cover tasks from 3D detection to motion forecasting (End-to-end)

Emphasis on Human-Robot Interactions (HRI)

(a) SLAM-based 3D Point Cloud map
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SLAM: Simultaneous Localization And Mapping
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(b) 12-layered semantic map of outdoor scene
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. SIT Dataset: Unigue Features

Precise multi-sensor synchronization

Multi-layered indoor & outdoor semantic maps from SLAM

Cover tasks from 3D detection to motion forecasting (End-to-end)

Emphasis on Human-Robot Interactions (HRI)
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@ Robot

(,7:7' Sitting Person

Past Traj. of Pedestrian
Future Traj. of Pedestrian
mmmm Past Traj. of Robot
===m Future Traj. of Robot

£

Visualization of SiT dataset of outdoor scene (Cafe_Street_3)

11



Precise multi-sensor synchronization

Multi-layered indoor & outdoor semantic maps from SLAM

Cover tasks from 3D detection to motion forecasting (End-to-end)

. SIT Dataset: Unique Features

Emphasis on Human-Robot Interactions (HRI)
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(c) Waymo Openl®
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. SIT Dataset: Unigue Features
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(a) Approach

Precise multi-sensor synchronization
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(b) Followed by Pedestrians

Multi-layered indoor & outdoor semantic maps from SLAM
Cover tasks from 3D detection to motion forecasting (End-to-end)

Emphasis on Human-Robot Interactions (HRI)
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(c) Avoidance by Robot
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o : Robot
O . HRI Ped.

: non-HRI Ped.

= mm: Future Traj.

= : Past Traj.

(d) Avoidance by Pedestrians
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3. Benchmarks & Challenges

= 3D object detection based on image and point clouds
= 3D multi-object tracking

» Trajectory prediction

» End-to-end 3D detection to motion forecasting
» Challenges open on Eval.Al (Feb. 2024)

Methods ‘ Modality ‘ mAP 1 AP(0.25) 1T AP(0.5) 1T AP(1.0) 1+ AP(2.0) 1t
FCOS3D [33] Camera 0.244 0.024 0.159 0.329 0.463
PointPillars [15] LiDAR 0.351 0.260 0.354 0.374 0.418
Centerpoint-P [39] LiDAR 0.414 0.300 0.424 0.446 0.486
Centerpoint-V [39] LiDAR 0.518 0.397 0.531 0.553 0.592
TransFusion-P [2] | LiDAR+Camera 0.390 0.248 0.371 0.437 0.507
TransFusion-V [2] | LiDAR+Camera 0.531 0.318 0.536 0.607 0.665

Evaluation of 3D pedestrian detection baselines.

3D cuboids on each object
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3. Benchmarks & Challenges

= 3D object detection based on image and point clouds

= 3D multi-object tracking

» Trajectory prediction

» End-to-end 3D detection to motion forecasting
» Challenges open on Eval.Al (Feb. 2024)

Methods sAMOTA 1+ AMOTA + AMOTP(m) | MOTA + MOTP(m) | IDS |
PointPillars [15] + AB3DMOT [34] 0.4110 0.1047 0.3580 0.4086 1.0277 1048
Centerpoint Detector [39] + AB3DMOT [34]|  0.4841 0.1398 0.3958 0.4586 0.9836 554
Centerpoint Tracker [39] 0.6070 0.2007 0.2679 0.4760 0.5140 1136

Evaluation of 3D pedestrian tracking baselines.

Past trajectories of each object
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. Benchmarks & Challenges

= 3D object detection based on image and point clouds
= 3D multi-object tracking

= Trajectory prediction

» End-to-end 3D detection to motion forecasting

» Challenges open on Eval.Al (Feb. 2024)

Methods |Map|ADE; | FDE; || ADEy, | FDE, J

Social-LSTM [1] 1.638 3.121 1.630 3.103
Y-Net [22] 1.527 2.802 0.836 1.878
Y-Net [22] v 1.361 2.624 0.675 1.547

NSP-SEFM [41] 1.346  2.261 0.634 1.087

NSP-SEM [41] | v 1.061 1.818 0.517 0.925

Evaluation of pedestrian trajectory prediction baselines

Past and future trajectories of each objects
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. Benchmarks & Challenges

= 3D object detection based on image and point clouds
= 3D multi-object tracking

» Trajectory prediction

» End-to-end 3D detection to motion forecasting

» Challenges open on Eval.Al (Feb. 2024)

Methods |mAP 1+ mAP; 1+ ADEs | FDE; |

FaF [21] 0.490 0.079 1.915 3.273
FutureDet-P [26] | 0.209 0.037 2.532 4.537
FutureDet-V [26] | 0.408 0.053 2416 4.409

Evaluation of end-to-end motion prediction baselines.

3D cuboids, past and future trajectories of each object
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. Benchmarks & Challenges

= 3D object detection based on image and point clouds
= 3D multi-object tracking

» Trajectory prediction

» End-to-end 3D detection to motion forecasting

» Challenges open on Eval.Al (Feb. 2024)
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4. Conclusion

= SiT Dataset: Socially interactive Pedestrian Trajectory Dataset for Social Navigation Robots
» |nclude diverse pedestrian trajectories captured in human-robot interactive scenarios
» High-quality 2D and 3D annotations for various perception tasks
» 12-layered semantic maps covering a wide range of scene information

» Facilitate design of end-to-end motion prediction models
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