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Partial Observability in Reinforcement Learning

e Most real-world problems are partially observable
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® State-of-the-art SyStemS lack mterpretab”lty [3’4] Figure 1: Reinforcement Learning under partial observability.
o Itis not comprehensible for a human what pieces of information
entered the memory
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How can we make our agents more interpretable?

e By using human language to compress past observations
o Language was optimized to provide high-level abstractions [1]
o Humans memorize abstract concepts rather than every single detail [2]
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Figure 2: We add a semantic and human-readable memory to an agent to tackle partially observable RL tasks. Visual observations
are mapped to the language domain via a CLIP retrieval. The memory component, a pretrained language encoder, operates on text
only and compresses a history of tokens into a vector. The agent takes an action based on the current observation and the
compressed history.
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[1] The evolution of language, Nowak et al., Proceedings of the National Academy of Sciences, 1999
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Semantic HELM
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Figure 3: Architecture of SHELM.
(a) We compile a semantic database by encoding prompt-augmented tokens from the overlapping vocabularies of CLIP and the TrXL.
(b) Given an observation, we retrieve the top-k embeddings and select their corresponding text tokens.
(c) These tokens are passed to the TrXL which represents the memory module of SHELM.
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MiniGrid-Memory
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Figure 5: Results on the MiniGrid-Memory task.

Left: The MiniGrid-Memory task [1].

Right: Mean IQM and 95% bootstrapped Cls across 30 seeds on MiniGrid-Memory environment for different
memory-based agents.

J ¥ U [1] Minimalistic gridworld environment for openai gym, Chevalier-Boisvert et al., 2018
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Psychlab - Continuous Recognition

Continuous Recognition
kettle g
W
B
g
O
e
°
L
= Q
>
S v —— SHELM
§ —— HELMv2
N —— HELM
—— Dreamerv3
S —— Dreamerv2
QO oY o> © K RS
) le7
Number of Interaction Steps

Figure 9: Results on the continuous recognition task of Psychlab.

Left: Sample observations and associated language tokens that were stored in the memory for SHELM on Psychlab.
Right: Mean IQM [1] and 95% bootstrapped Cls across 5 seeds over the Psychlab continuous recognition task for different
memory-based agents.

J ¥ U [1] Psychlab: A Psychology Laboratory for Deep Reinforcement Learning Agents, Leibo et al, 2018
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Conclusions
e SHELM adds interpretability to memory mechanism - . . i . . - . .

e Semantics are not always important as long as vision

. . . tree beach dune ditch fruit cliff
encoder can discriminate between objects - P— 1 ]
Tl | | E
P
. . . t=0 t=64 t=117 t=194 =260 =368
e SHELM excels in environments that heavily rely on memory e cheny palm_ lawn_frog  ocemn
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e Partial observability does not necessarily imply memory
dependency
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