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Set up and Motivation

•Problem: Performing regression on unknown manifolds when dealing with high-

dimensional data, particularly point cloud data.

•Challenge: 

•Traditional methods, particularly Euclidean GPs, may produce misleading results due to a 

mismatch with intrinsic manifold geometry. 

•Existing methods, assuming knowledge of manifold geometry, are impractical with sparse 

data.



Goal

• Goal: Present a new method to construct intrinsic gaussian 
processes for regression on unknown manifolds with probabilistic 
metrics in point cloud. (GPUM)

• The key goals include overcoming limitations of Euclidean Gaussian 
Processes, leveraging B-GPLVM and Riemannian geometry for 
probabilistic mapping, and defining adaptive boundaries based on 
uncertainty. The primary aim is to offer an effective solution for accurate 
manifold regression.



Method - Riemannian Metric tensor 

• Let J denote the Jacobian of ϕ. We have:

• The resulting metric g follows a non-central Wishart distribution:

• The expected metric tensor can be computed as:

• The boundary of the learned manifold can be defined by: 

The Riemannian metric is used as a key component in understanding and 

characterizing the geometry of the unknown manifolds. The specific use of 

the Riemannian metric contributes to the probabilistic representation of 

manifold geometry. 



Method-Latent Space

• A manifold embedded in a high dimensional Euclidean space can be well described by a 

probabilistic mapping function 𝜑 and the corresponding latent space. The mapping function could be 

GPLVM Model etc. 

The latent space, introduced through B-GPLVM, serves as a crucial 

component in GPUM, enabling probabilistic mapping, learning metric tensor 

distribution, uncertainty quantification, adaptive boundary definition, and 

dynamic insights into manifold dynamics.



Method-Heat Kernel and Brownian Motion 

• If M is a Euclidean space R^q , the heat kernel has a closed form corresponding 
to a time-varying Gaussian function, Consider the heat equation on M, given by: 

• We estimated the heat kernel as the BM transition density (Hsu,1988) by 
simulating Brownian Motion paths. The BM on a Riemannian manifold in a 
local coordinate system is given as a system of stochastic differential equations in 
the Itˆo form:

The heat kernel is estimated as the transition density of Brownian Motion 

and used as the covariance functions of GPUM .



Method-Brownian Motion and 
Transition Density

• A BM sample path (blue line, right panel) on M (Swiss 

roll in R^3 ) and its equivalent stochastic process 

(purple line, left panel) in the chart (or latent space) in 

R^2 . ϕ : R^2 → M ⊂ R^3 is a parametrization of M.



• GPLVM: The probability of the observed data

     For a point x_∗ in the latent space, the distribution of the Jacobian takes the form

• Bayesian Gaussian Processes Latent Variable Models (B-GPLVM) go beyond GPLVM 

by introducing a Bayesian framework.

Method-GPLVM and Bayesian GPLVM

They provide a way to map high-dimensional data to a lower-dimensional 

latent space using Gaussian processes.



Compared Method-Graph Laplacian

Graph Laplacian is a 

mathematical construct 

associated with a graph, a 

structure composed of nodes (or 

vertices) and edges connecting 

pairs of nodes.



Result-Swiss Roll



Result- Wifi Signal



Result- Camera angle estimation from images.



Conclusion

1. Introduces a new framework for regression on high-dimensional point cloud implicit 
manifolds: GPUM, using probabilistic latent variable models to learn the geometry of 
implicit manifolds and provide local metric distributions.

2. BM simulations using the B-GPLVM metric yield similar results to those using the analytical 
metric.

3. GPUM is constructed based on the equivalence relationship between heat kernels and BM 
transition density on manifolds, allowing it to incorporate the intrinsic geometry of the 
implicit manifold for inference while respecting internal constraints and boundaries.
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