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o This article presents a novel approach to construct Intrinsic Gaussian Processes for regression on unknown manifolds with probabilistic metrics (GPUM) in point clouds.
Submissions In many real world applications, one often encounters high dimensional data (e.g.*point cloud data’) centered around some lower dimensional unknown manifolds. The
geometry of manifold is in general different from the usual Euclidean geometry. Naively applying traditional smoothing methods such as Euclidean Gaussian Processes
(GPs) to manifold-valued data and so ignoring the geometry of the space can potentially lead to highly misleading predictions and inferences. A manifold embedded in a
high dimensional Euclidean space can be well described by a probabilistic mapping function and the corresponding latent space. We investigate the geometrical structure
of the unknown manifolds using the Bayesian Gaussian Processes latent variable models(B-GPLVM) and Riemannian geometry. The distribution of the metric tensor is
learned using B-GPLVM. The boundary of the resulting manifold is defined based on the uncertainty quantification of the mapping. We use the probabilistic metric tensor
to simulate Brownian Motion paths on the unknown manifold. The heat kernel is estimated as the transition density of Brownian Motion and used as the covariance
Open Source functions of GPUM. The applications of GPUM are illustrated in the simulation studies on the Swiss roll, high dimensional real datasets of WiF1 signals and image data
Software examples. Its performance is compared with the Graph Laplacian GP, Graph Mat\'{e}rn GP and Euclidean GP.
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*Problem: Performing regression on unknown manifolds when dealing with high-
dimensional data, particularly point cloud data.

vi = f(si) + €, €~ N(0,0%)
*Challenge:
*Traditional methods, particularly Euclidean GPs, may produce misleading results due to a
mismatch with intrinsic manifold geometry.
*Existing methods, assuming knowledge of manifold geometry, are impractical with sparse

data.
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* Goal: Present a new method to construct intrinsic gaussian
processes for regression on unknown manifolds with probabilistic
metrics in point cloud. (GPUM)

* The key goals include overcoming limitations of Euclidean Gaussian
Processes, leveraging B-GPLVM and Riemannian geometry for
probabilistic mapping, and defining adaptive boundaries based on
uncertainty. The primary aim is to offer an effective solution for accurate
manifold regression.
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The Riemannian metric is used as a key component in understanding and
characterizing the geometry of the unknown manifolds. The specific use of
the Riemannian metric contributes to the probabilistic representation of
manifold geometry.

P’

Let J denote the Jacobian of . We have: &8=J7"J., Jij = 90T
The resulting metric g follows a non-central Wishart distribution: 8 ~ Wy (P- 23, IE(JT)IE(J)) .
The expected metric tensor can be computed as: G = E(g) = E(J1)E(J) + pX;

The boundary of the learned manifold can be defined by: M = {x € R? | Var(¢(z)|z) = a}.
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The latent space, introduced through B-GPLVM, serves as a crucial
component in GPUM, enabling probabilistic mapping, learning metric tensor
distribution, uncertainty quantification, adaptive boundary definition, and
dynamic insights into manifold dynamics.

« A manifold embedded in a high dimensional Euclidean space can be well described by a

probabilistic mapping function ¢ and the corresponding latent space. The mapping function could be
GPLVM Model etc.
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The heat kernel is estimated as the transition density of Brownian Motion
and used as the covariance functions of GPUM .

 If M is a Euclidean space R”q, the heat kernel has a closed form corresponding
to a time-varying Gaussian function, Consider the heat equation on M, given by:

0 1
aKheat(s{)a S:t) - QASKheat(s{): S:t): 50,5 € M:

 We estimated the heat kernel as the BM transition density (Hsu,1988) by
simulating Brownian Motion paths. The BM on a Riemannian manifold in a
local coordinate system is given as a system of stochastic differential equations in
the It"o form:

L

q
dzi (1) = %G_UQ Zl % (67G"?) dt+ (g'/2dB(1))

j:
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A BM sample path (blue line, right panel) on M (Swiss
roll in R"3 ) and its equivalent stochastic process
(purple line, left panel) in the chart (or latent space) in
RA2 . ¢ : R*"2 — M c R"3 is a parametrization of M.
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They provide a way to map high-dimensional data to a lower-dimensional
latent space using Gaussian processes.

 GPLVM: The probability of the observed data

(S, | X, B) = p(S|®, B)p(®|X) = | | p(s!|#7, B)p(4!| ),

j=1
For a point X_* In the latent space, the distribution of the Jacobian takes the form

p(3X.8) = [[ N (1. %3)

=1

p
— H N(OKY Kylys! [ 0°K. . — 0K Ky 0Kx.).
=1

« Bayesian Gaussian Processes Latent Variable Models (B-GPLVM) go beyond GPLVM
by introducing a Bayesian framework.
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Graph Laplacian is a
mathematical construct
associated with a graph, a
structure composed of nodes (or
vertices) and edges connecting
pairs of nodes.

SORSANE SO Compared Method-Graph Laplacian i, N ron

Algorithm 2: GL Algorithm.

Algorithm inputs include ¢, €, K
Step (1): Construct the (n + v) X (n + v) matrix W and D as shown in Appendix I

with bandwidth e and points cloud {zi.....,Zn4,}. We can get:
A=DY?wpD"12
Step (2): Find the first K — 1 eigenpairs of A:
{aie Uiehi"
Step (3): Suppose ;¢ is the normalized vector of DY 20}-,5 in the 12 norm, and we

have:
1— Qg e

lic =
i e 2

Let N(i) = |B®(f(z:)){f(x1) ... f(zn)}| be the number of points on € ball in the
ambient space,We have the 12 norm of o:

o = J |Sd—1|ed i 92(7)

d Pt N(2)

Fori:=1,2,...,K — 1, we have: v; = ﬁ
; 2

Construct HY as

K-1
Hj‘,iz E e Picy, ],
i=0
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Figure 2: Swiss roll point cloud in * (left); Latent space and magnification factor(middie). GPUM prediction(right)

RGP R*GP GPUM GL-GP GM-GP
RMSE v = 250 0.284(0.006) 0.293(0.005) 0.163(0.020) 0.243(0.003) 0.231(0.001)
RMSE v =450 0.298(0.007) 0.290(0.005) 0.162(0.003) 0.220(0.002) 0.207(0.002)
RMSE v =800 0.287(0.006) 0.282(0.005) 0.164(0.002) 0.216(0.001) 0.206(0.001)
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RGP RGP GPUM GL-GP GM-GP
MEAN RMSE 5.57(1.43) 4.83(1.83) 4.11(0.88) 5.6(1.15) 6.04 (0.57)
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Figure 4: Coil images (left); Latent space and magnification factor (middle); GPUM prediction(right)

RIZIGP RIGP GPUM GL-GP GM-GP
MEAN RMSE  0.097(0.040) 0.094(0.042) 0.060(0.038) 0.116(0.027) 0.143(0.026)
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1. Introduces a new framework for regression on high-dimensional point cloud implicit
manifolds: GPUM, using probabilistic latent variable models to learn the geometry of
implicit manifolds and provide local metric distributions.

2. BM simulations using the B-GPLVM metric yield similar results to those using the analytical
metric.

3. GPUM is constructed based on the equivalence relationship between heat kernels and BM
transition density on manifolds, allowing it to incorporate the intrinsic geometry of the
implicit manifold for inference while respecting internal constraints and boundaries.
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