Variational Gibbs Inference for Statistical Model Estimation from Incomplete Data

Vaidotas Šimkus Ben Rhodes Michael Gutmann

School of Informatics
The University of Edinburgh

December 2023

Statistical models and missing data problem

- Statistical models $p_{\theta}(x)$ are typically specified for fully-observed data $x \in \mathcal{D}$,
- And are often fitted via maximum-likelihood estimation (MLE).
- What can we do if part of the data is missing?
- 1. Marginalising the missing variables $\int p_{\theta}(x_{\text{obs}}, x_{\text{mis}}) dx_{\text{mis}}$ is generally intractable.
- 2. Expectation-maximisation (EM) requires sampling of $p_{\theta}(x_{\text{mis}} \mid x_{\text{obs}}) \rightarrow \text{intractable}$.

$$\log p_{\boldsymbol{\theta}}(\boldsymbol{x}_{\mathsf{obs}}) \geqslant \mathbb{E}_{f(\boldsymbol{x}_{\mathsf{mis}}|\boldsymbol{x}_{\mathsf{obs}})} \left[\log \frac{p_{\boldsymbol{\theta}}(\boldsymbol{x}_{\mathsf{obs}}, \boldsymbol{x}_{\mathsf{mis}})}{f(\boldsymbol{x}_{\mathsf{mis}} \mid \boldsymbol{x}_{\mathsf{obs}})} \right],$$
 "ELBO"

- **3.** Variational EM requires fitting of $f_{\phi}(x_{\text{mis}} \mid x_{\text{obs}})$ for each $x_{\text{obs}} \in \mathcal{D} \rightarrow \text{inefficient}$.
- 4. Amortised variational inference requires 2^D variational distributions, one for each pattern of missingness → inefficient!

003/			003		
	d_1	d_2	d_3	d_4	$f_{oldsymbol{\phi}}(oldsymbol{x}_{mis}^i \mid oldsymbol{x}_{obs}^i)$
\boldsymbol{x}^1	x_1^1	?	x_{3}^{1}	x_{4}^{1}	$f_{\phi}(x_2^1 \mid x_1^1, x_3^1, x_4^1)$
$oldsymbol{x}^2$?	x_{2}^{2}	x_{3}^{2}	?	$f_{\phi}(x_1^2, x_4^2 \mid x_2^2, x_3^2)$
$oldsymbol{x}^3$?	?	?	x_4^3	$f_{\phi}(x_1^3, x_2^3, x_3^3 \mid x_4^3)$
:					:
					_

A wish-list

- A general-purpose method for any statistical model $p_{\theta}(x)$ via (approximate) MLE.
 - Do not make unnecessary simplifying assumptions to accommodate data missingness.
- ullet Efficiently represent and sample the 2^D conditional distributions for large datasets.

Variational Gibbs Inference: Core idea

- 1. Core idea: Turn the 2^D conditional distribution problem into D conditional distributions.
- 2. To make $f_{\phi}^{t}(x_{\text{mis}} \mid x_{\text{obs}})$ flexible:
 - Specify it to be the marginal of a Markov chain with a *learnable* kernel $\kappa_{\phi}(x_{\rm mis}^{\tau+1} \mid x_{\rm obs}, x_{\rm mis}^{\tau})$.
- 3. To address the 2^D pattern problem:
 - We specify the kernel to be Gibbs (updates one dimension of x_{mis} at a time):

$$\kappa_{\phi}(\boldsymbol{x}_{\mathsf{mis}}^{\tau+1} \mid \boldsymbol{x}_{\mathsf{mis}}^{\tau}, \boldsymbol{x}_{\mathsf{obs}}) = \mathbb{E}_{\boldsymbol{\pi}(j \mid \mathrm{idx}(\boldsymbol{m}))} \left[q_{\phi_{j}}(x_{j} \mid \boldsymbol{x}_{\mathsf{mis} \searrow j}^{\tau}, \boldsymbol{x}_{\mathsf{obs}}) \delta(\boldsymbol{x}_{\mathsf{mis} \searrow j}^{\tau+1} - \boldsymbol{x}_{\mathsf{mis} \searrow j}^{\tau}) \right],$$

where $\pi(j \mid idx(m))$ is the selection probability for the j-th dimension of a Gibbs sampler.

• Hence we have to learn only D variational Gibbs conditional $q_{\phi_i}(x_i \mid x_{\text{mis} \setminus i}, x_{\text{obs}})$.

See our JMLR paper for

- Full method: how to efficiently sample and optimise the transition kernel.
- Details on the variational model of the Gibbs conditionals.
- Applications to variational autoencoders and normalising flows.

References

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum Likelihood from Incomplete Data Via the EM Algorithm. *Journal of the Royal Statistical Society: Series B (Methodological)*, 39(1):1–22. (Cited on slide 2)

Gershman, S. J. and Goodman, N. D. (2014). Amortized Inference in Probabilistic Reasoning. In *Annual Meeting of the Cognitive Science Society*, volume 36. (Cited on slide 4)

Simkus, V., Rhodes, B., and Gutmann, M. U. (2023). Variational Gibbs Inference for Statistical Model Estimation from Incomplete Data. *Journal of Machine Learning Research*, 24(196):1–72. (Cited on slide 4)