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EPFL Scope of Reproducibility

First let’'s consider that:

* It is important to be aware of the implications that the hardware
and technical limitations can have in the model training,
architecture selection, memory and computational cost.

* In the theoretical framework, there are no memory or bit-precision,
nevertheless, computational limitations must be taken into
account when training the model.

* We also ran additional experiments to further extend the authors’
idea of the value of the subgradient being a hyperparameter to
tune during training.
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*

Scope of Reproducibility

The choice of ReLU’(0) becomes computationally meaningful
and influences the training and test accuracy.

There’s the trend to lower the precision to make the model
training more efficient in terms of energy, memory and
resources

— Which are the implications?

The main takeaway is that the arbitrary choice of mathematically
negligible factors (such as the RelLU’(0)) might not be
computationally negligible.
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Models

* Fully connected NN
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Figure 1~ MobileNetV3 architecture. The general architectures are the sam¢
for both MobileNetV3-Large and MobileNetV3-Small.
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* 3-layer grayscale MNIST for MobileNetV3
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Hyperparameters

Precision: 16 or 32-bit

Model Architecture

Activation function: ReLU vs RelLUG6 (vs LeakyReLU)
Value of subgradient(s)

* % % %

For all experiments:

* Optimizer — ADAM with y=0.001
* Batch Size: 128
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Initial Experiment
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Difference in weight sum between models
with different RelU thresholds (32-bit precision)
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Compare weight difference of the parameters with 16 and 32 bit precision models.
Use of L1 norm between weight matrices.
No performance comparison, just magnitude change.
Tested in the interval [0,1] for subgradient value.

= At low precision the change is more unstable.

Difference in weight sum between models
with different ReLU thresholds (16-bit precision)
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=PFL Fully Connected NN

= Made a volume comparison (L1 norm) between the models using 32 and 16 bit
precision.

= Differences between the choice of RELU’(0) became evident.
= The difference between weight matrices is considerable.

Difference in weight sum between models

with different ReLU thresholds (32-bit precision Difference in weight sum between models
{ P ) with different RelLU thresholds (16-bit precision)
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= Performance is also affected by
the decision of subgradient
value.

= At 32 bit train loss and error are
unstable, but seem to oscillate
the same mean value.

= At 16 bit precision there is less
variation but there's an offset in
both results (small for this
model)

(b)

(c)

Train Loss

Fully Connected NN
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=PFL Fully Connected NN

= Understand how these hyperparameters are affected by the decision of taking a lower
precision.

= Compared number of layers, batch size, number of neurons and sample size.
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=L Subgradient as an Hyperparameter

MobileNet V3

= Hyperparameter tuning for MobileNet V3 with and without the subgradient as an
hyperparameter.

= With the default subgradient, performance was more stable across different

hyperparameter configurations and reached a better overall performance.

(a)

Train loss
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Summary

= In theory the value of the surrogate of the subgradient in a
non-differentiable point should not impact the outcome.

= Even though in theory this is correct, when using numerical methods to
perform a backpropagation, altogether with numerical bit-precision it
becomes relevant as rounding errors can lead to different solutions.

= As the use of 32-bit precision is widely used as a standard in neural
network training and as 16-bit is becoming a trend to speed up the
training in GPUs and energy saving, the choice of subgradient becomes
relevant.
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