
Adversarial Estimation of Topological 

Dimension with Harmonic Score Maps

Dirichlet energy regularization of score maps 

boosts their adversarial robustness while 

revealing learned topological dimension.

Dirichlet Energy (DE): a functional measuring how variable a 

function is. A harmonic map is a critical point of the DE subject to 

a boundary constraint.

Results: Adversarial Robustness

Method Contributions

We identify the local averaging property as key to instilling robustness of 

learned score maps, and we prove that DE regularization corresponds 

exactly to added variance in the normal subspace of the learned density.

References
[1] Yang Song et al. (2020). “Score-based generative modeling through stochastic differential equations.” arXiv 

preprint arXiv:2011.13456

[2] Christian Szegedy et al. (2013). “Intriguing properties of neural networks.” arXiv preprint arXiv:1312.6199

[3] Alessandro Rozza et al. (2012). “Novel high intrinsic dimensionality estimators.” Machine Learning, 89:37-65

[4] Elizaveta Levina et al. (2004). “Maximum likelihood estimation of intrinsic dimension.” Advances in neural 

information processing systems, 17 2004

[5] Jonathan Bac et al. (2021). “Scikit-dimension: a python package for intrinsic dimension estimation. Entropy, 23

Eric Yeats (Duke), Cameron Darwin,

Frank Liu (ODU), Hai Li (Duke)

Contact: eric.yeats@duke.edu

Adversarial Robustness: Deep neural nets are notoriously 

vulnerable to malicious input perturbations [2]. Small changes to 

the input can result in very large changes in output.

Topological Dimension (TD): Number of dimensions data 

occupies near a point. It is important for:

• Data compression and dimension reduction

• Generalization ability of classifiers

Existing statistical estimators of TD require ample data and well-

picked hyperparameters, esp. for high-dimensional, noisy data.

Depiction of our topological dimension estimation method applied to the 

“Swirl” manifold. Some randomly selected original data and adversarial attacks 

are plotted with associated estimates of topological dimension.

• Locally Averaging score maps are more robust to adversaries. Reducing 

Dirichlet energy of score maps makes them closer to locally averaging.

• Dirichlet Energy (DE) Regularization of score maps corresponds to 

learning additional variance in the normal subspace of the learned density. 

• Topological dimension is revealed by exactly how much additional 

variance is learned, and we can measure variance with adversarial attacks.
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𝒏: ambient dimension

𝒏⊥: normal (off-manifold) dimension

𝜸: strength of DE regularization

TD = 𝒏 − 𝒏⊥

Additive Variance Property of DE Regularization

Reveals Topological Dimension (TD)

Denoising Score Matching DE Reg.

The likelihood of DE regularized DDPMs is more robust to adversarial attacks. 

Results: Additive Variance Property

Results: Topological Dimension Estimation

DDPMs trained on 8-dim Standard Gaussians 

learn approximately 𝜸 additional variance.
Score maps trained on 16-dim Standard 

Gaussians learn 𝜸 additional variance.

Our method (SM) is competitive with statistical estimators (MLE and MiND [3,4])  on simple manifolds [5] 

(Swirl, LineDiskBall) but is much more accurate on noisy and high-dimensional manifolds. Subscripts of 

statistical methods are number of neighbors used, and SM0.01 indicates 𝜸 = 𝟎. 𝟎𝟏      (𝝈 = 𝟎. 𝟏)

Topological dimension is estimated for 

various points on the “Swirl” manifold as 

they are decayed through time (forward VP 

diffusion process without noise).

The TD estimates clearly depict how the 

locally 1D swirl structure is first collapsed to 

a disk then eventually to a point (the 

Gaussian prior).

Conclusion
This work connects adversarial vulnerability of score models with the 

geometry of the underlying manifold they capture. We show that minimizing 

the Dirichlet energy of learned score maps simultaneously boosts their 

robustness while revealing topological dimension. Leveraging this, we 

introduce a novel method to measure the topological dimension of 

manifolds captured by score models using adversarial attacks.

Given the ambient dimension 𝑛, denoising scale 𝜎, and level of DE 

regularization 𝛾, one can recover the topological dimension (TD) using 
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