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mmNormVAE: Normative Modelling on Multimodal Neuroimaging

Data using Product-of-Experts Variational Autoencoder
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* Two-step approach:
» Train a model on data of healthy participants.
» Apply trained model on disease patients to estimate
patient-level deviations.

* Intuitively stmilar to anomaly detection.

* Deep learning models (e.g. variational autoencoders)
v' Learns to reconstruct data of healthy subjects.

v Model less precise in reconstructing data of AD patients.
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Challenges:

* Existing VAE normative models have unimodal structure.

* AD 1s multifactorial, showing deviations from the norm in
features across multiple imaging modalities.

* Multiple modalities provide complementary information.

Contributions
* Multimodal variational autoencoder (mmNormVAE)

* Model joint distribution between multiple MRI modalities using
Product-of-Experts (PoE) approach

 Use mmNormVAE as a normative model to estimate subject-
level deviations of AD patients

Healthy subjects (N = 9875) = UK Biobank

v Excluding all subjects with recent history of depression and
other mental disorders.

Disease patients (N = 862) > Alzheimer’s Disease
Neuroimaging Initiative (ADNI).

Freesurfer to estimate brain volumes from T1/T2 MRI images.
v’ 64 cortical, 35 subcortical, 16 hippocampal.

Multimodal Normative Modelling
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Deviation maps: Mean deviations for
each region (across all patients).

Region-wise deviations increase

with the severity of the disease.
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Loss function

ELBO(X) = Eq¢zx) | Y Ailogps(; | Z)] — BKL(g4(2 | X)|Ip(2))
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Summation of reconstruction

losses across modalities

Experimental Results

Multimodal
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KL divergence between joint-modality
posterior and Gaussian prior

Frequency of statistically significant deviations
of hippocampal brain regions
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Hippocampal Brain regions

Frequency of Significance: Number of times each
cortical and subcortical region (T1-weighted MRI)
has statistically significant deviations from healthy
subjects (p < 0.05)

 ADASI13 - Level of cognitive
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disfunction in AD.

* High scores = greater loss in
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memory and cognition due to AD.




